[1] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, "Quantum cellular automata," Nanotechnology, vol. 4, p. 49, 1993.
[2] T. Cole and J. Lusth, "Quantum-dot cellular automata," Progress in Quantum Electronics, vol. 25, pp. 165-189, 2001.
[3] H. Mahmoodi, S. Mukhopadhyay, and K. Roy, "Estimation of delay variations due to random-dopant fluctuations in nanoscale CMOS circuits," IEEE Journal of Solid-State Circuits, vol. 40, pp. 1787-1796, 2005.
[4] I. Amlani, A. O. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, and G. L. Snider, "Digital logic gate using quantum-dot cellular automata," science, vol. 284, pp. 289-291, 1999.
[5] P. D. Tougaw and C. S. Lent, "Logical devices implemented using quantum cellular automata," Journal of Applied physics, vol. 75, pp. 1818-1825, 1994.
[6] A. Orlov, A. Imre, G. Csaba, L. Ji, W. Porod, and G. Bernstein, "Magnetic quantum-dot cellular automata: Recent developments and prospects," Journal of Nanoelectronics and Optoelectronics, vol. 3, pp. 55-68, 2008.
[7] G. H. Bernstein, A. Imre, V. Metlushko, A. Orlov, L. Zhou, L. Ji, et al., "Magnetic QCA systems," Microelectronics Journal, vol. 36, pp. 619-624, 2005.
[8] Y. Wang and M. Lieberman, "Thermodynamic behavior of molecular-scale quantum-dot cellular automata (QCA) wires and logic devices," IEEE Transactions on Nanotechnology, vol. 3, pp. 368-376, 2004.
[9] Y. Lu and C. S. Lent, "Theoretical study of molecular quantum-dot cellular automata," Journal of Computational Electronics, vol. 4, pp. 115-118, 2005.
[10] A. Pulimeno, M. Graziano, D. Demarchi, and G. Piccinini, "Towards a molecular QCA wire: simulation of write-in and read-out systems," Solid-State Electronics, vol. 77, pp. 101-107, 2012.
[11] M. Momenzadeh, J. Huang, M. B. Tahoori, and F. Lombardi, "Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, pp. 1881-1893, 2005.
[12] W. Liu, L. Lu, M. O'Neill, and E. E. Swartzlander, "Design rules for quantum-dot cellular automata," in Circuits and Systems (ISCAS), 2011 IEEE International Symposium on, 2011, pp. 2361-2364.
[13] C. S. Lent and B. Isaksen, "Clocked molecular quantum-dot cellular automata," IEEE Transactions on Electron Devices, vol. 50, pp. 1890-1896, 2003.
[14] V. Vankamamidi, M. Ottavi, and F. Lombardi, "Two-dimensional schemes for clocking/timing of QCA circuits," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, pp. 34-44, 2008.
[15] K. Navi, S. Sayedsalehi, R. Farazkish, and M. R. Azghadi, "Five-input majority gate, a new device for quantum-dot cellular automata," Journal of Computational and Theoretical Nanoscience, vol. 7, pp. 1546-1553, 2010.
[16] R. Akeela and M. D. Wagh, "A five-input majority gate in quantum-dot cellular automata," in NSTI Nanotech, 2011, pp. 978-981.
[17] B. Sen and B. Sikdar, "Characterization of universal NAND-NOR-inverter QCA gate," in 11th IEEE VLSI Design and Test Symposium, Kolkata, 2007.
[18] M. B. Tahoori, M. Momenzadeh, J. Huang, and F. Lombardi, "Defects and faults in quantum cellular automata at nano scale," in VLSI Test Symposium, 2004. Proceedings. 22nd IEEE, 2004, pp. 291-296.
[19] R. Farazkish, "A new quantum-dot cellular automata fault-tolerant five-input majority gate," Journal of nanoparticle research, vol. 16, p. 2259, 2014.
[20] M. Khatun, B. D. Padgett, G. A. Anduwan, I. Sturzu, and D. Tougaw, "Defect and temperature effects on complex quantum-dot cellular automata devices," Journal of Applied Mathematics and Physics, vol. 1, p. 7, 2013.
[21] M. Poorhosseini, "Novel Defect Terminolgy Beside Evaluation And Design Fault Tolerant Logic Gates In Quantum-Dot Cellular Automata," Journal of Advances in Computer Engineering and Technology, vol. 2, pp. 17-26, 2016.
[22] J. Dai, L. Wang, and F. Lombardi, "An information-theoretic analysis of quantum-dot cellular automata for defect tolerance," ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 6, p. 9, 2010.
[23] J. Huang, M. Momenzadeh, L. Schiano, and F. Lombardi, "Simulation-based design of modular QCA circuits," in Nanotechnology, 2005. 5th IEEE Conference on, 2005, pp. 533-536.
[24] X. Yang, L. Cai, S. Wang, Z. Wang, and C. Feng, "Reliability and performance evaluation of QCA devices with rotation cell defect," IEEE Transactions on Nanotechnology, vol. 11, pp. 1009-1018, 2012.
[25] J. Huang, M. Momenzadeh, and F. Lombardi, "Defect tolerance of QCA tiles," in Design, Automation and Test in Europe, 2006. DATE'06. Proceedings, 2006, pp. 1-6.
[26] A. Roohi, H. Khademolhosseini, S. Sayedsalehi, and K. Navi, "A novel architecture for quantum-dot cellular automata multiplexer," International Journal of Computer Science Issues, vol. 8, pp. 55-60, 2011.
[27] N. Shah, F. Khanday, and J. Iqbal, "Quantum-dot Cellular Automata(QCA) Design of Multi-Function Reversible Logic Gate," Communications in Information Science and Management Engineering, vol. 2, 2012.
[28] M. Mustafa and M. Beigh, "Design and implementation of quantum cellular automata based novel parity generator and checker circuits with minimum complexity and cell count," 2013.
[29] A. M. Chabi, S. Sayedsalehi, S. Angizi, and K. Navi, "Efficient QCA exclusive-or and multiplexer circuits based on a nanoelectronic-compatible designing approach," International scholarly research notices, vol. 2014, 2014.
[30] S. Sheikhfaal, S. Angizi, S. Sarmadi, M. H. Moaiyeri, and S. Sayedsalehi, "Designing efficient QCA logical circuits with power dissipation analysis," Microelectronics Journal, vol. 46, pp. 462-471, 2015.
[31] M. Mohammadi, S. Gorgin, and M. Mohammadi, "Design of non-restoring divider in quantum-dot cellular automata technology," IET Circuits, Devices & Systems, vol. 11, pp. 135-141, 2017.
[32] QCADesigner Homepage: http://www.qcadesigner.ca/
[33] K. Das and D. De, "QCA defect and fault analysis of diverse nanostructure for implementing logic gate," International J. of Recent Trends in Engineering and Technology, vol. 3, 2010.