[1] 1. Amir, L.R., V. Everts, and A.L. Bronckers, Bone regeneration during distraction osteogenesis. Odontology, 2009. 97(2): p. 63-75.
[2] 2. Ilizarov, G.A., The tension-stress effect on the genesis and growth of tissues: Part I. The influence of stability of fixation and soft-tissue preservation. Clinical orthopaedics and related research, 1989. 238: p. 249-281.
[3] 3. Ilizarov, G.A., The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clinical orthopaedics and related research, 1989. 239: p. 263-285.
[4] 4. Cano, J., et al., Osteogenic alveolar distraction: a review of the literature. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2006. 101(1): p. 11-28.
[5] 5. Mandible distraction osteogenesis. 2017; Available from: https://www.aofoundation.org/Structure/Pages/default.aspx.
[6] 6. Snyder, C.C., et al., Mandibular lengthening by gradual distraction: preliminary report. Plastic and reconstructive surgery, 1973. 51(5): p. 506-508.
[7] 7. Karp, N.S., et al., Bone lengthening in the craniofacial skeleton. Annals of plastic surgery, 1990. 24(3): p. 231-237.
[8] 8. McCarthy, J.G., et al., Lengthening the human mandible by gradual distraction. Plastic and reconstructive surgery, 1992. 89(1): p. 1-8.
[9] 9. Zhou, H.-Z., et al., Rapid lengthening of rabbit mandibular ramus by using nitinol spring: a preliminary study. Journal of Craniofacial Surgery, 2004. 15(5): p. 725-729.
[10] 10. Kojimoto, H., et al., Bone lengthening in rabbits by callus distraction. The role of periosteum and endosteum. Bone & Joint Journal, 1988. 70(4): p. 543-549.
[11] 11. Paley, D., et al., Treatment of congenital pseudoarthrosis of the tibia using the Ilizarov technique. Clinical orthopaedics and related research, 1992. 280: p. 81-93.
[12] 12. Dzhorov, A. and I. Dzhorova, Maxillofacial surgery and distraction osteogenesis--history, present, perspective. Khirurgiia, 2002. 59(6): p. 30-35.
[13] 13. Karp, N.S., et al., Membranous bone lengthening: a serial histological study. Annals of plastic surgery, 1992. 29(1): p. 2-7.
[14] 14. Zheng, L., et al., High-rhythm automatic driver for bone traction: an experimental study in rabbits. International journal of oral and maxillofacial surgery, 2008. 37(8): p. 736-740.
[15] 15. Mehrara, B.J., et al., Rat mandibular distraction osteogenesis: II. Molecular analysis of transforming growth factor beta-1 and osteocalcin gene expression. Plastic and reconstructive surgery, 1999. 103(2): p. 536-547.
[16] 16. Rowe, N.M., et al., Rat mandibular distraction osteogenesis: Part I. Histologic and radiographic analysis. Plastic and reconstructive surgery, 1998. 102(6): p. 2022-2032.
[17] 17. Kessler, P., F. Neukam, and J. Wiltfang, Effects of distraction forces and frequency of distraction on bony regeneration. British Journal of Oral and Maxillofacial Surgery, 2005. 43(5): p. 392-398.
[18] 18. Wiltfang, J., et al., Continuous and intermittent bone distraction using a microhydraulic cylinder: an experimental study in minipigs. British Journal of Oral and Maxillofacial Surgery, 2001. 39(1): p. 2-7.
[19] 19. Peacock, Z.S., et al., Automated continuous distraction osteogenesis may allow faster distraction rates: A preliminary study. Journal of Oral and Maxillofacial Surgery, 2013. 71(6): p. 1073-1084.
[20] 20. Peacock, Z.S., et al., Bilateral Continuous Automated Distraction Osteogenesis: Proof of Principle. The Journal of craniofacial surgery, 2015. 26(8): p. 2320-2324.
[21] 21. Peacock, Z.S., et al., Skeletal and soft tissue response to automated, continuous, curvilinear distraction osteogenesis. Journal of Oral and Maxillofacial Surgery, 2014. 72(9): p. 1773-1787.
[22] 22. Djasim, U.M., et al., Continuous versus discontinuous distraction: evaluation of bone regenerate following various rhythms of distraction. Journal of Oral and Maxillofacial Surgery, 2009. 67(4): p. 818-826.
[23] 23. Mofid, M.M., et al., Callus stimulation in distraction osteogenesis. Plastic and reconstructive surgery, 2002. 109(5): p. 1621-1628.
[24] 24. Zheng, L.W., L. Ma, and L.K. Cheung, Angiogenesis is enhanced by continuous traction in rabbit mandibular distraction osteogenesis. Journal of Cranio-Maxillofacial Surgery, 2009. 37(7): p. 405-411.
[25] 25. Park, J.-T., et al., A piezoelectric motor-based microactuator-generated distractor for continuous jaw bone distraction. Journal of Craniofacial Surgery, 2011. 22(4): p. 1486-1488.
[26] 26. Schmelzeisen, R., G. Neumann, and R. Von der Fecht, Distraction osteogenesis in the mandible with a motor-driven plate: a preliminary animal study. British Journal of Oral and Maxillofacial Surgery, 1996. 34(5): p. 375-378.
[27] 27. Ploder, O., et al., Mandibular lengthening with an implanted motor-driven device: preliminary study in sheep. British Journal of Oral and Maxillofacial Surgery, 1999. 37(4): p. 273-276.
[28] 28. Troulis, M.J., et al., Effects of latency and rate on bone formation in a porcine mandibular distraction model. Journal of oral and maxillofacial surgery, 2000. 58(5): p. 507-513.
[29] 29. Yeshwant, K., et al., Analysis of skeletal movements in mandibular distraction osteogenesis. Journal of oral and maxillofacial surgery, 2005. 63(3): p. 335-340.
[30] 30. Ritter, L., et al., Range of curvilinear distraction devices required for treatment of mandibular deformities. Journal of oral and maxillofacial surgery, 2006. 64(2): p. 259-264.
[31] 31. Alveolar distraction technique at the mandible. 2015; Available from: https://pocketdentistry.com/42-bone-augmentation-alveolar-distraction-osteogenesis/.
[32] 32. Avinash Kumar, N.B., MOTORIZED DISTRACTION OSTEOGENESIS, in Annual Product Confrence. 2016: India.
[33] 33. Chung, M., et al., An Implantable Battery System for a Continuous Automatic Distraction Device for Mandibular Distraction Osteogenesis. Journal of Medical Devices, 2010. 4(4): p. 045005.
[34] 34. Crane, N.B., et al. Design and Feasibility Testing of a Novel Device for Automatic Distraction Osteogenesis of the Mandible. in ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2004. American Society of Mechanical Engineers.
[35] 35. Aykan, A., et al., Mandibular distraction osteogenesis with newly designed electromechanical distractor. Journal of Craniofacial Surgery, 2014. 25(4): p. 1519-1523.
[36] 36. Savoldi, F., et al., The biomechanical properties of human craniofacial sutures and relevant variables in sutural distraction osteogenesis: a critical review. Tissue Engineering Part B: Reviews, 2018. 24(1): p. 25-36.
[37] 37. Dundar, S., et al., Comparison of the Effects of Local and Systemic Zoledronic Acid Application on Mandibular Distraction Osteogenesis. Journal of Craniofacial Surgery, 2017. 28(7): p. e621-e625.
[38] 38. Meyers, N., et al., Novel systems for the application of isolated tensile, compressive, and shearing stimulation of distraction callus tissue. PloS one, 2017. 12(12): p. e0189432.
[39] 39. Keßler, P., J. Wiltfang, and F.W. Neukam, A new distraction device to compare continuous and discontinuous bone distraction in mini-pigs: a preliminary report. Journal of Cranio-Maxillofacial Surgery, 2000. 28(1): p. 5-11.
[40] 40. Magill, J.C., et al., Automating skeletal expansion: An implant for distraction osteogenesis of the mandible. Journal of medical devices, 2009. 3(1): p. 014502.
[41] 41. Ayoub, A. and W. Richardson, A new device for microincremental automatic distraction osteogenesis. British Journal of Oral and Maxillofacial Surgery, 2001. 39(5): p. 353-355.
[42] 42. Mofid, M.M., et al., Spring-mediated mandibular distraction osteogenesis. Journal of Craniofacial Surgery, 2003. 14(5): p. 756-762.
[43] 43. Zhou, H.-Z., et al., Transport distraction osteogenesis using nitinol spring: an exploration in canine mandible. Journal of Craniofacial Surgery, 2006. 17(5): p. 943-949.
[44] 44. Idelsohn, S., et al., Continuous mandibular distraction osteogenesis using superelastic shape memory alloy (SMA). Journal of Materials Science: Materials in Medicine, 2004. 15(4): p. 541-546.
[45] 45. Yamauchi, K., et al., Timed-release system for periosteal expansion osteogenesis using NiTi mesh and absorbable material in the rabbit calvaria. Journal of Cranio-Maxillo-Facial Surgery, 2016. 44(9): p. 1366-1372.
[46] 46. Wee, J., et al., Development of a Force-Driven Distractor for Distraction Osteogenesis. Journal of Medical Devices, 2011. 5(4): p. 041004.
[47] 47. Ayoub, A., W. Richardson, and J. Barbenel, Mandibular elongation by automatic distraction osteogenesis: the first application in humans. British Journal of Oral and Maxillofacial Surgery, 2005. 43(4): p. 324-328.
[48] 48. Van Strijen, P., et al., Complications in bilateral mandibular distraction osteogenesis using internal devices. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2003. 96(4): p. 392-397.
[49] 49. Tong, H., et al., Midface distraction osteogenesis using a modified external device with elastic distraction for crouzon syndrome. Journal of Craniofacial Surgery, 2017. 28(6): p. 1573-1577.
[50] 50. Hatefi, S., O. Ghahraei, and B. Bahraminejad, Design and Development of a Novel Multi-Axis Automatic Controller for Improving Accuracy in CNC Applications. Majlesi Journal of Electrical Engineering, 2017. 11(1).
[51] 51. Hatefi, S., O. Ghahraei, and B. Bahraminejad, Design and Development of a Novel CNC Controller for Improving Machining Speed. Majlesi Journal of Electrical Engineering, 2016. 10(1): p. 7.