1. Hatefi, S. and K. Abou-El-Hossein, Review of single-point diamond turning process in terms of ultra-precision optical surface roughness. The International Journal of Advanced Manufacturing Technology, 2020. 106(5): p. 2167-2187.
2. Abdulkadir, L.N., et al., Review of molecular dynamics/experimental study of diamond-silicon behavior in nanoscale machining. The International Journal of Advanced Manufacturing Technology, 2018. 98(1-4): p. 317-371.
3. Mishra, V., et al., Ultra-precision Diamond Turning Process, in Micro and Nano Machining of Engineering Materials. 2019, Springer. p. 65-97.
4. Ming, W., et al., A comprehensive review of theory and technology of glass molding process. The International Journal of Advanced Manufacturing Technology, 2020: p. 1-36.
5. Zhang, S., et al., A review of fly cutting applied to surface generation in ultra-precision machining. International Journal of machine tools and manufacture, 2016. 103: p. 13-27.
6. Zhang, S., et al., A review of surface roughness generation in ultra-precision machining. International Journal of Machine Tools and Manufacture, 2015. 91: p. 76-95.
7. Sharma, V., M. Dogra, and N. Suri, Advances in the turning process for productivity improvement—a review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2008. 222(11): p. 1417-1442.
8. Short, M. and K. Burn, A generic controller architecture for intelligent robotic systems. Robotics and Computer-Integrated Manufacturing, 2011. 27(2): p. 292-305.
9. Chen, Y.-L., et al., Auto-tracking single point diamond cutting on non-planar brittle material substrates by a high-rigidity force controlled fast tool servo. Precision Engineering, 2017. 49: p. 253-261.
10. Ulmer Jr, B.C. and T.R. Kurfess, Integration of an open architecture controller with a diamond turning machine. Mechatronics, 1999. 9(4): p. 349-361.
11. Zhu, W.-L., et al., Modeling and analysis of uncertainty in on-machine form characterization of diamond-machined optical micro-structured surfaces. Measurement Science and Technology, 2016. 27(12): p. 125017.
12. Liu, X., et al., Analysis of surface texturing in radial ultrasonic vibration-assisted turning. Journal of Materials Processing Technology, 2019. 267: p. 186-195.
13. Langan, S.M., D. Ravindra, and A.B. Mann, Process parameter effects on residual stress and phase purity after microlaser-assisted machining of silicon. Materials and Manufacturing Processes, 2018. 33(14): p. 1578-1586.
14. Banik, S., et al., Recent trends in laser assisted machining of ceramic materials. Materials Today: Proceedings, 2018. 5(9): p. 18459-18467.
15. Li, Z., et al., Ultrasonically assisted single point diamond turning of optical mold of tungsten carbide. Micromachines, 2018. 9(2): p. 77.
16. Fortunato, A., et al., A laser assisted hybrid process chain for high removal rate machining of sintered silicon nitride. CIRP Annals, 2015. 64(1): p. 189-192.
17. Bhowmik, S. and D. Zindani, Combined Variant of Hybrid Micromachining Processes, in Hybrid Micro-Machining Processes. 2019, Springer. p. 61-70.
18. Bhowmik, S. and D. Zindani, Overview of Hybrid Micro-manufacturing Processes, in Hybrid Micro-Machining Processes. 2019, Springer. p. 1-12.
19. Luo, X. and Y. Qin, Hybrid machining : theory, methods, and case studies. 2018, London [etc.]: Academic Press.
20. Chavoshi, S.Z. and X. Luo, Hybrid micro-machining processes: A review. Precision Engineering, 2015. 41: p. 1-23.
21. Lauwers, B., et al., Hybrid processes in manufacturing. CIRP Annals, 2014. 63(2): p. 561-583.
22. Dandekar, C.R., Y.C. Shin, and J. Barnes, Machinability improvement of titanium alloy (Ti–6Al–4V) via LAM and hybrid machining. International Journal of Machine Tools and Manufacture, 2010. 50(2): p. 174-182.
23. Li, D., et al., Kinematics error compensation for a surface measurement probe on an ultra-precision turning machine. Micromachines, 2018. 9(7): p. 334.
24. Li, D., et al., Ultraprecision machining of microlens arrays with integrated on-machine surface metrology. Optics express, 2019. 27(1): p. 212-224.
25. Moretti, M., et al., Assessment of surface topography modifications through feature-based registration of areal topography data. Surface Topography: Metrology and Properties, 2019. 7(2): p. 025003.
26. Gao, W., et al., On-machine and in-process surface metrology for precision manufacturing. Ann. CIRP, 2019. 68.
27. Troutman, J.R., et al., Machining and metrology of a chalcogenide glass freeform lens pair. Procedia Manufacturing, 2016. 5: p. 669-683.
28. Bono, M.J. and R.L. Hibbard, Fabrication and metrology of micro-scale sinusoidal surfaces in polymer workpiece materials. 2004, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States).
29. Balasubramaniam, R., R.V. Sarepaka, and S. Subbiah, Diamond turn machining: Theory and practice. 2017: CRC Press.
30. Zhu, L., et al., Review on fast tool servo machining of optical freeform surfaces. The International Journal of Advanced Manufacturing Technology, 2018. 95(5-8): p. 2071-2092.
31. Kumar, J., Ultrasonic machining—a comprehensive review. Machining Science and Technology, 2013. 17(3): p. 325-379.
32. Singh, R. and J. Khamba, Ultrasonic machining of titanium and its alloys: A review. Journal of Materials Processing Technology, 2006. 173(2): p. 125-135.
33. Liu, Y., et al., Experimental Investigation on Form Error for Slow Tool Servo Diamond Turning of Micro Lens Arrays on the Roller Mold. Materials, 2018. 11(10): p. 1816.
34. Venkatesan, K., R. Ramanujam, and P. Kuppan, Laser assisted machining of difficult to cut materials: research opportunities and future directions-a comprehensive review. Procedia Engineering, 2014. 97: p. 1626-1636.
35. Samant, A.N. and N.B. Dahotre, Laser machining of structural ceramics—a review. Journal of the European ceramic society, 2009. 29(6): p. 969-993.
36. Sofuoğlu, M.A., et al., Experimental investigation of machining characteristics and chatter stability for Hastelloy-X with ultrasonic and hot turning. The International Journal of Advanced Manufacturing Technology, 2018. 95(1-4): p. 83-97.
37. Huang, S., et al., Diamond-cutting ferrous metals assisted by cold plasma and ultrasonic elliptical vibration. The International Journal of Advanced Manufacturing Technology, 2016. 85(1-4): p. 673-681.
38. Xu, W., et al., Diamond wear properties in cold plasma jet. Diamond and Related Materials, 2014. 48: p. 96-103.
39. Yip, W. and S. To, Effects of magnetic field on microstructures and mechanical properties of titanium alloys in ultra-precision diamond turning. Materials Research Express, 2019. 6(5): p. 056553.
40. Yip, W. and S. To, Reduction of material swelling and recovery of titanium alloys in diamond cutting by magnetic field assistance. Journal of Alloys and Compounds, 2017. 722: p. 525-531.
41. Yip, W. and S. To, Tool life enhancement in dry diamond turning of titanium alloys using an eddy current damping and a magnetic field for sustainable manufacturing. Journal of Cleaner Production, 2017. 168: p. 929-939.
42. Hatefi, S. and K. Abou-El-Hossein, Feasibility Study on Design and Development of a Hybrid Controller for Ultra-Precision Single-Point Diamond Turning. Majlesi Journal of Electrical Engineering, 2019. 13(2): p. 121-128.
43. Hatefi, S., O. Ghahraei, and B. Bahraminejad, Design and Development of a Novel Multi-Axis Automatic Controller for Improving Accuracy in CNC Applications. Majlesi Journal of Electrical Engineering, 2017. 11(1): p. 19.
44. Hatefi, S., et al., Continuous distraction osteogenesis device with MAAC controller for mandibular reconstruction applications. BioMedical Engineering OnLine, 2019. 18(1): p. 43.