[1] Carpentier, "Optimal Power Flows Uses, Methods, and Developments", Proceeding. IFAC Conference, Vol. 18, no.7, pp.11-21, 1985.
[2] K. S. Pandya and S. K. Joshi, “A Survey of Optimal Power Flow Methods,” Journal of Appl. Inf. Technol., Vol. 4, No.5, pp. 450–458, 2005.
[3] D. H. Wolpert and W. G. Macready, “No Free Lunch Theorems for Optimization,” IEEE Trans. Evol. Comput., Vol. 1, pp. 67–82, 1997.
[4] M. M. A. M. Abido, “Optimal Power Flow Using Particle Swarm Optimization,” Journal of Electr. Power Energy Syst., Vol. 24, No.7, pp. 563–571, 2002.
[5] M. A. Abido, “Optimal Power Flow using Tabu Search Algorithm,” Electr. Power Components Syst., Vol. 30, No.5, pp. 469–483, 2002.
[6] G. B. Ghanizadeh, A. J. Mokhtari, G., Abedi, M., Gharehpetian, “Optimal Power Flow Based on Imperialist Competitive Algorithm,” Int. Rev. Electr. Eng., Vol.6, pp. 4-12, 2011.
[7] H. R. E. H. Bouchekara, A. E. Chaib, M. A. Abido, and R. A. El-Sehiemy, “Optimal power flow using an Improved Colliding Bodies Optimization algorithm,” Appl. Soft Comput., Vol. 42, pp.119–131, 2016.
[8] H. R. E. H. Bouchekara, “Optimal Power Flow using Black-Hole-Based Optimization Approach,” Appl. Soft Comput. Vol. 24, pp.879–888, 2014.
[9] Roy Ranjit, Jadhav HT, “Optimal power flow Solution of Power System Incorporating Stochastic Wind Power using Gbest Guided Artificial Bee Colony Algorithm.” Int Journal of Electr. Power Energy Syst., Vol. 64, pp.562–578, 2015.
[10] Panda Ambarish, Tripathy M. “Optimal Power Flow Solution of Wind Integrated Power System Using Modified Bacteria Foraging Algorithm.” Int. Journal of Electr. Power Energy Syst., Vol. 54, pp.306–314, 2014.
[11] Panda Ambarish, Tripathy M. “Security Constrained Optimal Power Flow Solution of Wind-Thermal Generation System using Modified Bacteria Foraging Algorithm.” Energy, Vol. 93, pp.816–827, 2015.
[12] Shi L, Wang C, Yao L, Ni Y, Bazargan M. “Optimal Power Flow Solution Incorporating Wind Power.” IEEE Syst. Journal, Vol. 6, No. 2, pp. 233–241, 2012.
[13] Jabr RA, Pal BC. “Intermittent Wind Generation in Optimal Power Flow Dispatching.” IET Gener. Transm. Distrib., Vol. 3, No.1, pp. 66–74, 2009.
[14] Mishra, S., Yateendra Mishra, and S. Vignesh. “Security Constrained Economic Dispatch Considering Wind Energy Conversion Systems.” IEEE Power and Energy Society General Meeting, 2011.
[15] Zhou Wei, Peng Yu, Sun Hui. “Optimal Wind–Thermal Coordination Dispatch based on Risk Reserve Constraints.” Europ.Transact. Elect. Power, Vol. 21, No. 1, pp.740–756, 2011.
[16] Dubey Hari Mohan, Pandit Manjaree, Panigrahi BK, “Hybrid Flower Pollination Algorithm with Time-Varying Fuzzy Selection Mechanism for Wind Integrated Multi-Objective Dynamic Economic Dispatch”. Renewable Energy, Vol. 83, pp. 188–202, 2015.
[17] Tazvinga Henerica, Zhu Bing, Xia Xiaohua. “Optimal Power Flow Management for Distributed Energy Resources with Batteries.” Energy Convers. Manage, Vol.102, pp. 104–10., 2015.
[18] Kusakana Kanzumba. “Optimal Scheduling for Distributed Hybrid System with Pumped Hydro Storage.” Energy Convers. Manage. Vol. 111, pp. 253–60, 2016.
[19] P. P. Biswas, P.N.Suganthan, G.A.J.Amartunga, "Optimal Power Flow Solutions Incorporating Stochastic Wind and Solar." Energy conversion and management, Vol. 148, pp. 1194-1207, 2017.
[20] S.Mirjalili, “Moth-flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm,” Knowledge-Based Syst., Vol. 89, pp. 228–249, 2015.
[21] V.Savsani, M.A.Tawhid, "Non-Dominated Sorting Moth Flame Optimization (NS-MFO) for multi-objective problems." Engineering Applications for Artificial Intelligence, Vol. 63, pp. 20–32, 2017.