[1] A. Morgado, R. del Rio, J. de la Rosa, “Resonation-based cascade Σ∆ modulator for broadband low voltage A/D conversion”. Electron. Lett. Vol. 44, No. 2, pp. 97–99, 2008.
[2] K. Lee, J. Chae, M. Aniya, K. Hamashita, K. Takasuka, S. Takeuchi, G.C. Temes, “A noise-coupled time-interleaved delta-sigma ADC with 4.2 MHz bandwidth, 98 dB THD, and 79 dB SNDR”. IEEE J. Solid-State Circuits, Vol. 43, No. 12, pp. 2601–2612, 2008.
[3] K. Lee, M.R. Miller, G.C. Temes, “An 8.1 mW, 82 dB delta-sigma ADC with 1.9 MHz BW and 98 dB THD”. IEEE J. Solid-State Circuits, Vol. 44, No. 8, pp. 2202–2211, 2009.
[4] G.C. Temes, “New architectures for low-power delta-sigma analog-to-digital converter”. in IEEE Asia Pacific Conference on Circuits and Systems, pp. 1–6, 2008.
[5] H. Fakhraie, T. Moosazadeh and et al,” multi-stage sigma-delta modulator based on noise-coupling and digital feed-forward techniques”. Analog Integrated Circuits and Signal Processing, https://doi.org/10.1007/s10470-021-01877-0, 2021.
[6] K.-Y. Nam, S.-M. Lee, D. K. Su, and B. A. Woolley, “A low-voltage low-power sigma-delta modulator for broadband analog-to-digital conversion,” IEEE J. Solid State Circuits, vol. 40, no. 9, pp. 1855-1864, 2005.
[7] Y. Fujimoto, Y. Kanazawa, P. Lore, and M. Miyamoto, "An 80/100MS/s 76.3/70.1dB SNDR ΣΔ ADC for digital TV receivers," in ISSCC Dig. Tech. Papers, pp. 201-210, Feb 2006.
[8] A. Hamoui, M. Sukhon, and F. Maloberti, "Digitally-enhanced 2nd-order ΣΔ modulator with unity-gain signal transfer function," in Proc. IEEE Int. Symp. Circuits Syst., pp. 1664-1667, 2008.
[9] A. Hamoui, M. Sukhon, and F. Maloberti, “ Digitally-enhanced high-order Σ∆ modulators," in Proc. IEEE Int. Conf. Electronics Circuits Syst., pp. 161-170 ,2008.
[10] R. Gaggl, M. Inversi, and A. Wiesbauer, “A power optimized 14-bit SC Σ∆ modulator for ADSL CO applications" in ISSCC Dig. Tech. Papers, pp. 82-83, 2004.
[11] I. Fujimori et al., “A 90-dB SNR 2.5-MHz output-rate ADC using cascaded multibit delta-sigma modulation at 8× oversampling ratio”. IEEE J. Solid-State Circuits, Vol. 35, No. 12, pp. 1820–1828, 2000.
[12] L. Bos et al., “Multirate cascaded discrete-time low-pass Σ∆ modulator for GSM/Bluetooth/UMTS,” IEEE J. Solid-State Circuits, Vol. 45, No. 6, pp. 1198–1208, 2010.
[13] N. Maghari, S. Kwon, and U.-K. Moon, “74 dB SNDR multi-loop sturdy-MASH delta-sigma modulator using 35 dB open-loop opamp gain,” IEEE J. Solid-State Circuits, Vol. 44, No. 8, pp. 2212–2221, 2009.
[14] M. Taghizadeh and S. Sadughi, “Improved unity-STF sturdy MASH Σ∆ modulator for low-power wideband applications,” Electron. Lett., Vol. 51, No. 23, pp. 1941–1942, Nov. 2015.
[15] B. Khazaeili, M. Yavari. "MASH ΣΔ modulator with highly reduced in‐band quantization noise", Electronics Letters, 2014.
[16] C. Han and N. Maghari, “Delay based noise cancelling sturdy MASH delta-sigma modulator,” Electron. Lett., Vol. 50, No. 5, pp. 351–353, Feb. 2014.
[17] Wang, Y., and Temes, G.C. “SD ADCs with second-order noise-shaping enhancement” . IEEE Int. Midwest Symp. on Circuits and Systems’, pp. 345–348,9 August 2009.
[18] R. Wei, and J. Yu, “Multi-stage sigma-delta ADC with noise-coupling technology”, IEICE Electronics Express, Vol.13, No.23, 1-9, 2016.
[19] Khazaeili. B, Yavari. M,. “A simple structure for MASH Σ∆ modulators with highly reduced in-band quantization Noise”. Springer J Circ Syst Sig Process.;36: pp. 2125–2153, 2017.
[20] R. Baird, T. Fiez, “Linearity enhancement of multibit delta-sigma A/D and D/A converters using data weighted Averaging”. IEEE Trans. Circuits Syst. II Vol. 42, No. 12, pp. 753–762, 1995.
[21] S. Kwon and U.-K. Moon, "A high-speed delta-sigma modulator with relaxed DEM timing requirement," in Proc. IEEE Int. Symp. Circuits Syst., pp. 733-736, 2007.
[22] M. A. N. Haroun, “Low-Power High-Speed High-Resolution Delta-Sigma Modulators for Digital TV Receiver in nanometer CMOS [dissertation],” Montreal, Canada, Department of Electrical and Computer Engineering McGill University, April 2014.
[23] Sandner. C, Clara. M, Santner. A, Hartig. T, Kuttner. F,. “A 6-bit 1.2-GS/s low-power flash-ADC in 0.13-μm digital CMOS”. IEEE J. Solid-State Circuits, Vol. 40, No. 7, 1499–1505. 2005.
[24] Rijo Sebastian, Babita Roslind Jose, T. K. Shahana, Jimson Mathew. "A Low-distortion Hardware Efficient MASH Modulator with Enhanced Noise Shaping", Smart Science, 2017.
[25] Razavi. B, “Principles of Data Conversion System Design”. New York: IEEE Press. 1995.
[26] Kobayashi. T, Nogami. K, Shirotori. Fujimoto. T,Y,. “A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture”. IEEE J. Solid-State Circuits, Vol. 28, 1993.
[27] Dessouky. M, Kaiser. A, “Very low-voltage digital-audio ΣΔ modulator with 88-dB dynamic range using local switch bootstrapping”. IEEE J. Solid-State Circuits, Vol. 36, No. 3, 349-355, Mar. 2001.
[28] Kwak Y-S, et al. “A 72.9-dB SNDR 20-MHz BW 2-2 Discrete-Time Resolution-Enhanced Sturdy MASH Delta–Sigma Modulator Using Source-Follower-Based Integrators”. IEEE Journal of Solid-State Circuits, Vol. 53 , Issue: 10, 2772 – 2782, Oct. 2018.
[29] Aminzadeh. H., “Study of capacitance nonlinearity in nano-scale multi-stage MOSFET-only sigma-delta modulators,” Int. J. Electron. Commun. (AEÜ) 85, pp. 150-158, 2018.