[1] A. Rezaee, K. Rezaee, J. Haddadnia and H. T. Gorji, “Supervised metaheuristic extreme learning machine for multiple sclerosis detection based on multiple feature descriptors in mr images”, SN Applied Sciences, vol. 2, pp. 1-19, 2020.
[2] F. Ozdemir, Z. Peng, P. Fuernstahl, C. Tanner, O. Goksel, “Active learning for segmentation based on Bayesian sample queries”, Knowledge-Based Systems, vol. 214, 106531, 2021.
[3] K. Rezaee, A. Badiei, S. Meshgini, “A hybrid deep transfer learning based approach for COVID-19 classification in chest X-ray images”, In 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME), pp. 234-241, 2020.
[4] K. Rezaee, A. Rezaee, N. Shaikhi, J. Haddadnia, “Multi-mass breast cancer classification based on hybrid descriptors and memetic meta-heuristic learning”, SN Applied Sciences, vol. 2, no. 7, pp. 1-19, 2020.
[5] T. Kim, and et al., “Active learning for accuracy enhancement of semantic segmentation with CNN-corrected label curations: Evaluation on kidney segmentation in abdominal CT”, Scientific reports, vol. 10, no. 1, pp. 1-7, 2020.
[6] K. Rezaee, and et al, “Multi-mass breast cancer classification based on hybrid descriptors and memetic meta-heuristic learning”, SN Applied Sciences 2, no. 7, pp. 1-19, 2020
[7] K. Rezaee and J. Haddadnia, “Designing an Algorithm for Cancerous Tissue Segmentation Using Adaptive K-means Cluttering and Discrete Wavelet Transform”, J Biomed Phys Eng., vol. 3, no. 3, pp. 93-104, Sep 2013.
[8] Y. Shi, M. Li, W. Zeng, “MARGM: A multi-subjects adaptive region growing method for group fMRI data analysis”, Biomedical Signal Processing and Control, vol. 69, pp. 102882, 2021.
[9] T. Wu, Z. Yang, “Animal tumor medical image analysis based on image processing techniques and embedded system”, Microprocessors and Microsystems, vol. 81, 103671, 2021.
[10] Y. Alzahrani, Y., B. Boufama, “Biomedical Image Segmentation: A Survey”, SN Computer Science, vol. 2, no. 4, pp. 1-22, 2021.
[11] F. H. Araújo, R. R. Silva, F. N. Medeiros, J. F. R. Neto, P. H. C. Oliveira, A. G. C. Bianchi, D. Ushizima, “Active contours for overlapping cervical cell segmentation” International Journal of Biomedical Engineering and Technology 35, no. 1, pp. 70-92, 2021.
[12] K. Bi, Y. Tan, K. Cheng, Q. Chen, Y. Wang, Y, “Sequential shape similarity for active contour based left ventricle segmentation in cardiac cine MR image”, Mathematical Biosciences and Engineering, vol. 19, no. 2, pp. 1591-1608, 2022.
[13] G. Liu, G., and et al., “Superpixel-based active contour model via a local similarity factor and saliency”, Measurement, no. 110442, 2021
[14] R. Zhang, M. You, “Fast contour detection with supervised attention learning”, Journal of Real-Time Image Processing, vol. 18, no. 3, pp. 647-657, 2021.
[15] Y. Lei, and G. Weng, “A robust hybrid active contour model based on pre-fitting bias field correction for fast image segmentation”, Signal Processing: Image Communication, no. 116351, 2021.
[16] B. D. M. Zhang and Q. Li, “Deep active contour network for medical image segmentation”, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, 2020.
[17] Y. Yang, R. Wang, H. Ren, “Active contour model based on local intensity fitting and atlas correcting information for medical image segmentation” Multimedia Tools and Applications, pp. 1-17, 2021.
[18] S. Husham, A. Mustapha, S. A. Mostafa, M. K. Al-Obaidi, M. A. Mohammed, A. I. Abdulmaged, et al., “Comparative analysis between active contour and otsu thresholding segmentation algorithms in segmenting brain tumor magnetic resonance imaging”, J. Inf. Technol. Manage., vol. 12, pp. 48-61, Dec. 2020.
[19] M. Sharif, U. Tanvir, E. U. Munir, M. A. Khan and M. Yasmin, “Brain tumor segmentation and classification by improved binomial thresholding and multi-features selection”, Journal of Ambient Intelligence and Humanized Computing, pp. 1-20, 2018.
[20] J.A. Sethian, “Evolution, Implementation, and Application of Level Set and Fast Marching Methods for Advancing Fronts”, Journal of Computational Physics vol. 169, pp. 503–555, 2001.
[21] D. Adalsteinsson, J.A. Sethian, “A Fast Level Set Method for Propagating Interfaces”, J.Comp.Phys. pp.269~277, 1995.
[22] S. Osher, R. Fedkiw, “Level Set Methods and Dynamic Implicit Surface”, SpringerVerlag, 2002.
[23] D Terzopoulos, D Metaxas. “Dynamic 3D Models with Local and Global Deformations: Deformable Superquadrics.” IEEE Transactions on Pattern Analysis and Machine Intelligence vol. 13, no. 7, pp.703-715, 1999.
[24] J. Weickert and G. Kuhne, “Fast methods for implicit active contour models”, in Geometric Level Set Methods in Imaging Vision and Graphics, New York:Springer-Verlag, 2003.
[25] M. Holtzman-Gazit, D. Goldshe, and R Kimmel. “Hierarchical segmentation of thin structure in volumetric medical images”. In: Medical image computing and computer-assisted intervention (MICCAI), Montreal; 2003.
[26] C. Rother, V. Kolmogorov, and A. Blake, “GrabCut: interactive foreground extraction using iterated graph cuts”, ACM Transactions on Graphics (TOG), vol.23 no.3, August 2004.
[27] C. Pluempitiwiriyawej, JMF. Moura, Yi-Jen Lin Wu and Chien Ho. “STACS: New Active Contour Scheme for Cardiac MR Image Segmentation”, IEEE Transactions on Medical Imaging, vol. 24, no. 5, pp 593-602, May 2005.
[28] Y. Boykov and G. Funka-Lea, “Graph Cuts and Efficient N-D Image Segmentation”. In International Journal of Computer Vision (IJCV), vol. 70, no. 2, pp. 109-131, 2006.
[29] Herbulot, S. Jehan-Besson, S. Duffner, M. Barlaud, and G. Aubert. “Segmentation of vectorial image features using shape gradients and information measures”. Journal of Mathematical Imaging and Vision, 25(3):365–386, October 2006.
[30] C.M. Li, C. Kao, J. Gore, Z. Ding, “Implicit active contours driven by local binary fitting energy”, IEEE Conference on Computer Vision and Pattern Recognition, 2007.
[31] K. Ni, X. Bresson, T. Chan, and S. Esedoglu. “Local histogram based segmentation using the wasserstein distance”. International Journal of Computer Vision, vol. 84, pp. 97–111, August 2009.
[32] N. Le, T. Bui, V. K. Vo-Ho, K. Yamazaki, K. Luu, “Narrow Band Active Contour Attention Model for Medical Segmentation”, Diagnostics, vol. 11, no. 8, pp. 1393, 2021.
[33] K. Rezaee, S. M. Rezakhani, M. R. Khosravi, M. K. Moghimi, “A survey on deep learning-based real-time crowd anomaly detection for secure distributed video surveillance”, Personal and Ubiquitous Computing, pp. 1-17, 2021.
[34] K. Rezaee, S. Savarkar, X. Yu, J Zhang, “A hybrid deep transfer learning-based approach for Parkinson's disease classification in surface electromyography signals”, Biomedical Signal Processing and Control, vol. 71, pp. 103161, 2022.
[35] X. Chen, B. M. Williams, S. R. Vallabhaneni, G. Czanner, R. Williams and Y. Zheng, “Learning active contour models for medical image segmentation”, Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 11632-11640, Jun. 2019.
[36] S. Gur, L. Wolf, L. Golgher and P. Blinder, “Unsupervised microvascular image segmentation using an active contours mimicking neural network”, Proc. IEEE Int. Conf. Comput. Vision, pp. 10 722-10 731, 2019.
[37] B. Kim and J. C. Ye, “Mumford–shah loss functional for image segmentation with deep learning”, IEEE Trans. Image Process., vol. 29, pp. 1856-1866, 2020.
[38] Y. Kim, S. Kim, T. Kim and C. Kim, “CNN-based semantic segmentation using level set loss”, Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV), pp. 1752-1760, Jan. 2019.
[39] P. Hu, B. Shuai, J. Liu and G. Wang, “Deep level sets for salient object detection”, Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 540-549, 2017.
[40] D. Marcos, D. Tuia, B. Kellenberger, L. Zhang, M. Bai, R. Liao, et al., “Learning deep structured active contours end-to-end”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8877-8885, 2018.
[41] A. Hatamizadeh, A. Hoogi, D. Sengupta, W. Lu, B. Wilcox, D. Rubin, et al., “Deep active lesion segmentation”, International Workshop on Machine Learning in Medical Imaging (MLMI)., pp. 98-105, 2019.
[42] E. E. Nithila and S. S. Kumar, “Segmentation of lung from CT using various active contour models”, Biomed. Signal Process. Control, vol. 47, pp. 57-62, 2019.
[43] J. Suckling, J. Parker, D. R. Dance, S. Astley, I. Hutt, C. R. M. Boggis, et al., “The mammographic image analysis society digital mammogram database”, in Proc. 2nd Int. Workshop Digit. Mammography, U.K., York, pp. 375-378, Jul. 1994.
[44] https://www.med.harvard.edu/aanlib/home.html.
[45] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff and H. Adam, “Encoder-decoder with atrous separable convolution for semantic image segmentation”, Proc. ECCV, pp. 801-818, Sep. 2018.
[46] P. Kohli, P. H. Torr and L. Ladick, “Robust higher order potentials for enforcing label consistency”, Int. J. Comput. Vis., vol. 82, no. 3, pp. 302-324, 2009.
[47] Y. Yang, X. Hou, H. Ren, “Efficient active contour model for medical image segmentation and correction based on edge and region information”. Expert Systems with Applications, pp. 116436, 2022.