[1] O’Dea. (2021,Sep.). Global LPWAN Connections 2017–2023, by Technology. [Online]. Available: https://www.statista.com/statistics/88 0822/lpwan-ic-market-share-by-technology/
[2] W. Ayoub, A. E. Samhat, F. Nouvel, M. Mroue, and J.-C. Prévotet, “Internet of mobile things: Overview of lorawan, dash7, and nb-iot in lpwans standards and supported mobility,” IEEE Communications Surveys & Tutorials, Vol. 21, No. 2, pp. 1561-1581, 2018.
[3] R. Herrero, Fundamentals of IoT Communication Technologies. Springer, 2022.
[4] J. Wu, B. Guo, H. Wang, H. Liu, L. Li, and W. Zhou, “A 2.4 GHz 87 μ W low-noise amplifier in 65 nm CMOS for IoT applications,” Modern Physics Letters B, Vol. 35, No. 32, p. 2150485, 2021.
[5] S. Y. Hojat, H. F. Baghtash, and E. N. Aghdam, “A 350μW Low Noise Amplifier for IOT Applications,” in 2021 Iranian International Conference on Microelectronics (IICM), pp. 1-4.
[6] S. C. Gladson, A. H. Narayana, V. Thenmozhi, and M. Bhaskar, “A 219-µW ultra-low power low-noise amplifier for IEEE 802.15. 4 based battery powered, portable, wearable IoT applications,” SN Applied Sciences, Vol. 3, No. 4, pp. 1-18, 2021.
[7] K. S. Yi, S. A. Z. Murad, and S. Mohyar, “A study and analysis of high efficiency CMOS power amplifier for IoT applications,” Journal of Physics, Vol. 1755, No. 1, p. 012020, 2021.
[8] S. Nejadhasan, F. Zaheri, E. Abiri, and M. R. Salehi, “PVT‐compensated low‐voltage and low‐power CMOS LNA for IoT applications,” International Journal of RF and Microwave Computer‐Aided Engineering, Vol. 30, No. 11, p. 22419, 2020.
[9] E. Hanae, A. T. Naima, and E. Taj-eddin, “2.3–21 GHz broadband and high linearity distributed low noise amplifier,” Integration, Vol. 76, pp. 61-68, 2021.
[10] Y. Qian, S. Wang, and S. Diao, “A Low Power Inductorless Wideband Low Noise Amplifier,” in 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1-5, 2019.
[11] Z. Li, S. Wang, Z. Li, H. Tang, and Y. Zhuang, “A 0.5 to 6 GHz wideband cascode LNA with enhanced linearity by employing resistive shunt‐shuntfeedback and derivative superposition,” Microwave and Optical Technology Letters, Vol. 62, No. 10, pp. 3157-3162, 2020.
[12] V. Singh, S. K. Arya, and M. Kumar, “A Common-Gate Current-Reuse UWB LNA for Wireless Applications in 90 nm CMOS,” Wireless Personal Communications, Springer, Vol. 119, No. 2, pp. 1405-1423, 2021.
[13] F. S. Bidabadi and S. V. Mir-Moghtadaei, “An Ultra-Wideband 0.1–6.1 GHz Low Noise Amplifier in 180 nm CMOS Technology,” Journal of Circuits, Systems and Computers, Vol. 30, No. 06, p. 2150104, 2021.
[14] S.-C. Lin, C.-L. Tai, S.-F. Wang, Y. Ku, Z.-W. Wang, and S.-C. Liu, “A broadband low noise amplifier for high performance wireless microphones,” International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 2019: IEEE, pp. 1-2, 2019.
[15] S. Kim and K. Kwon, “Broadband Balun-LNA Employing Local Feedback g m-Boosting Technique and Balanced Loads for Low-Power Low-Voltage Applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 67, No. 12, pp. 4631-4640, 2020.
[16] C.-H. Chang and M. Onabajo, “Analysis and demonstration of an IIP3 improvement technique for low-power RF low-noise amplifiers,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 65, No. 3, pp. 859-869, 2018.
[17] A. Aydoğdu, D. Tomar, O. Z. Batur, and G. Dündar, “A 2.55-mW on-chip passive balun-LNA in 180-nm CMOS,” Analog Integrated Circuits and Signal Processing, Vol. 111, No. 2, pp. 223-234, 2022.
[18] A. A. Roobert and D. G. N. Rani, “Design and analysis of 0.9 and 2.3‐GHz concurrent dual‐band CMOS LNA for mobile communication,” International Journal of Circuit Theory and Applications, Vol. 48, No. 1, pp. 1-14, 2020.
[19] J. Shi, X. Yan, H. Zhang, W. Zhao, X. Xia, and F. Lin, “A 0.1-3.4 GHz LNA with Multiple Feedback and Current-Reuse Technique based on 0.13-μm SOI CMOS,” in 2019 IEEE MTT-S International Wireless Symposium (IWS), pp. 1-3, 2019.