Document Type : Reseach Article

Author

University of Education, Hue University 34 Le Loi, Hue city, Viet nam

Abstract

In this paper, we analyze the dispersion properties of photonic crystal fiber with the core replaced by a composite of 85% SiO2-15% GeO2. The air hole's radii of the layers in the cladding are designed differently to improve the dispersion and nonlinear properties of the fibers. Both anomalous and all-normal dispersions have been optimized. Based on numerical simulation results, two optimal structures (d1/Ʌ = 0.4, Ʌ = 0.9 µm and d1/Ʌ = 0.45 and Ʌ = 1.0 µm) are proposed with a very small dispersion value of 0.298 ps/ nm.km and −0.311 ps/nm.km at the pump wavelength of 1.53 µm and 0.985 µm, respectively. The high nonlinear coefficient, small effective mode area, and very low attenuation of about 10−7 dB/m at the pump wavelength are also favorable conditions for the application of broad-spectrum supercontinuum with low peak power. The proposed fibers can be new supercontinuum sources that effectively replace glass core fibers.

Keywords

  • [1] Jiao, J. Yao, Z. Zhao, X. Wang, N. Si, X. Wang, P. Chen, Z. Xue, Y. Tian, B. Zhang, P. Zhang, S. Dai, Q. Nie, and R. Wang, “Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber,” Opt. Express, 27(3), pp. 2036–2043, 2019. https://doi.org/10.1364/OE.27.002036.
  • [2] Jiang, T. Wang, Z. Sun, J. Chen, X. Zhang, P. Lin, P. Chen, and Y. Zhao, “Partially coherent seeding of supercontinuum generation in picosecond regime,” Opt. Laser Technol., 120, 105752 (5pp), 2019. https://doi.org/10.1016/j.optlastec.2019.105752.
  • [3] Poudel, and C. F. Kaminski, “Supercontinuum radiation in fluorescence microscopy and biomedical imaging applications,” J. Opt. Soc. Am. B, 36, pp. A139–A153, 2019. https://doi.org/10.1364/JOSAB.36.00A139.
  • [4] Bazargani, B. Gharekhanlou, and M. Banihashemi, “Improvement in the Transmission Coefficient of Photonic Crystal Power Splitter using Selective Optofluidic Infiltration,” Majlesi Journal of Electrical Engineering, 16(3), 2022, pp. 35–40. https://doi.org/10.30486/mjee.2022.696504.

 

  • [5] Parandin, and M. M. Karkhanehchi, “Low Size All Optical XOR and NOT Logic Gates Based on Two-Dimensional Photonic Crystals,” Majlesi Journal of Electrical Engineering, 13(2), pp 1–5, 2019. http://mjee.iaumajlesi.ac.ir/index/index.php/ee/article/view/2703.
  • [6] Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février, “Supercontinuum-based Fourier transform infrared spectromicroscopy,” Optica, 5, pp. 378–381, 2018. https://doi.org/10.1364/OPTICA.5.000378.
  • [7] Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express, 20(5), pp. 4887–4892, 2012. https://doi.org/10.1364/OE.20.004887.
  • [8] Seifouri, S. Olyaee, and M. Dekamin, “A New Design of As2Se3‎ Chalcogenide Glass Photonic Crystal Fiber with Ultra-Flattened Dispersion in Mid-Infrared,” Majlesi Journal of Electrical Engineering, 8(4), pp. 9–15, 2014. http://mjee.iaumajlesi.ac.ir/index/index.php/ee/article/view/1240.
  • [9] N. Thi, D. H. Trong, and L. C. Van, “Supercontinuum generation in ultra-flattened near-zero dispersion PCF with C7H8 infiltration,” Opt. Quantum Electron., 55, 93, 2023. https://doi.org/10.1007/s11082-022-04351-x.
  • C. Van, T. N. Thi, D. H. Trong, B. T. L. Tran, N. V. T. Minh, T. D. Van, T. L. Canh, Q. H. Dinh, and K. D. Quoc, “Comparison of supercontinuum spectrum generating by hollow core PCFs filled with nitrobenzene with different lattice types,” Opt. Quantum Electron., 54(5), 300 (17pp), 2022. https://doi.org/10.1007/s11082-022-03667-y.
  • N. Thi, D. H. Trong, B. T. L. Tran, T. D. Van, L. C. Van, “Optimization of optical properties of toluene-core photonic crystal fibers with circle lattice for supercontinuum generation,” J. Opt., 2022. https://doi.org/10.1007/s12596-021-00802-y.
  • T. L. Tran, T. N. Thi, N. V. T. Minh, T. L. Canh, M. L. Van, V. C. Long, K. D. Xuan, and L. C. Van, “Analysis of dispersion characteristics of solid-core PCFs with different types of lattice in the claddings, infiltrated with ethanol,” Photonics Lett. Poland, 12(4), pp. 106–108, 2020. https://doi.org/10.4302/plp.v12i4.1054.
  • Ghanbari, A. Kashaninia, A. Sadr, and H. Saghaei, “Supercontinuum generation for optical coherence tomography using magnesium fluoride photonic crystal fiber,” Optik, 140, pp. 545–554, 2017. https://doi.org/10.1016/j.ijleo.2017.04.099.
  • C. Van, H. V. Le, N. D. Nguyen, N. V. T. Minh, Q, H. Dinh, V. T. Hoang, T. N. Thi, and B. C. Van, “Modelling of lead-bismuth gallate glass ultra-flatted normal dispersion photonic crystal fiber infiltrated with tetrachloroethylene for high coherence mid-infrared supercontinuum generation,” Laser Phys., 32, 055102 (12pp), 2022. https://doi.org/10.1088/1555-6611/ac599b.
  • Yang, W. Bi, X. Li, M. Liao, W. Gao, Y. Ohishi, Y. Fang, and Y. Li, “Ultrabroadband supercontinuum generation through filamentation in a lead fluoride crystal,” J. of the Opt. Soc. Am. B, 36(2), pp. A1-A7, 2019. https://doi.org/10.1364/JOSAB.36.0000A1
  • Li, L. Wang, M. Liao, L. Zhang, W. Bi, T. Xue, Y. Liu, R. Zhang, and Y. Ohishi, “Suspended-core fluoride fiber for broadband supercontinuum generation,” Opt. Mater., 96, 109281 (5pp), 2019. https://doi.org/10.1016/j.optmat.2019.109281.
  • A. H. Ali, M. F. O. Hameed, and S. S. A. Obayya, “Ultrabroadband supercontinuum generation through photonic crystal fiber ưith As2S3 chalcogenide core,” J. Lightwave Technol., 34(23), pp. 5423–5430, 2016. https://doi.org/10.1109/JLT.2016.2615044.
  • Vyas, T. Tanabe, M. Tiwari, and G. Singh, “Chalcogenide photonic crystal fiber for ultraflat mid-infrared supercontinuum generation,” Chin. Opt. Lett., 14(12), 123201, 2016. https://doi.org/10.3788/COL201614.123201.
  • C. Van, T. N. Thi, B. T. L. Tran, D. H. Trong, N. V. T. Minh, H. V. Le, and V. T. Hoang, “Multi-octave supercontinuum generation in As2Se3 chalcogenide photonic crystal fiber,” Photon. Nanostruct. Fundam. Appl., 48, 100986 (10pp), 2022. https://doi.org/10.1016/j.photonics.2021.100986.
  • Medjouri, D. Abed, and Z. Becer, “Numerical investigation of a broadband coherent supercontinuum generation in Ga8Sb32S60 chalcogenide photonic crystal fiber with all-normal dispersion,” Opto-Electronics Review, 27(1), pp. 1–9, 2019. https://doi.org/10.1016/j.opelre.2019.01.003.
  • Zou, and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids, 162(1–2), pp. 68–80, 1993. https://doi.org/10.1016/0022-3093(93)90742-G.
  • Yang, B. Zhang, K. Yin, J. Yao, G. Liu, and J. Hou, “0.6-3.2 μm supercontinuum generation in a step-index germania-core fiber using a 4.4 kW peak-power pump laser,” Opt. Express, 24(12), pp. 12600–12606, 2016. https://doi.org/10.1364/OE.24.012600.
  • Jain, R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, and O. Bang, “Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber,” Opt. Express, 24(23), pp. 26667–26677, 2016. https://doi.org/10.1364/OE.24.026667.
  • Jain, R. Sidharthan, G. Woyessa, P. M. Moselund, P. Bowen, S. Yoo, and O. Bang, “Scaling power, bandwidth, and efficiency of mid-infrared supercontinuum source based on a GeO2-doped silica fiber,” J. Opt. Soc. Am. B, 36(2), pp. A86-A92, 2019. https://doi.org/10.1364/JOSAB.36.000A86.
  • Chen, M. Liao, W. Bi, F. Yu, T. Wang, W. Gao, and L. Hu, “Coherent Supercontinuum Generation in Step-Index Heavily Ge-Doped Silica Fibers With All Normal Dispersion”, IEEE Photon. J., 14(4), 2022. DOI: 10.1109/JPHOT.2022.3177945.
  • Jain, R. Sidharthan, P. M.Moselund, S. Yoo, D. Ho, and O. Bang, “High power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber,” Fiber Lasers XIV: Technology and Systems, 10083, 1008318 (4pp), 2017. https://doi.org/10.1117/12.2251648.
  • H. Reddy, A. V. Kir’yanov, A. Dhar, S. Das, D. Dutta, M. Pal, Y. O. Barmenkov, J. A. Minguella-Gallardo, S. K. Bhadra, and M. C. Paul, “Fabrication of ultra-high numerical aperture GeO2-doped fiber and its use for broadband supercontinuum generation,” Appl. Opt., 56(33), pp. 9315–9324, 2017. https://doi.org/10.1364/AO.56.009315.
  • H. Thai, T. T. Pham, Md. A. Hossain, and N. H. Hai, “A novel design of highly nonlinear golden spiral Ge-doped core photonic crystal fiber for supercontinum light sources application,” International Conference on Advanced Technologies for Communications (ATC 2014), pp. 681–685, 2014. https://doi.org/10.1109/atc.2014.7043474.
  • A. Kamynin, A. E. Bednyakova, M. P. Fedoruk, I. A. Volkov, K. N. Nishchev, and A. S. Kurkov, “Supercontinuum generation beyond 2 µm in GeO2 fiber: comparison of nano- and femtosecond pumping,” Laser Phys. Lett., 12(6), 065101 (3pp), 2015. https://doi.org/10.088/1612-2011/12/6/065101.
  • Zhang, E. J. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express, 21(20), pp. 23261–23271, 2013. https://doi.org/10.1364/OE.21.023261.
  • M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett., 29(22), pp. 2596–2598, 2004. https://doi.org/10.1364/OL.29.002596.
  • M. Dianov, and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol., 23(11), pp. 3500–3508, 2005. https://doi.org/10.1109/JLT.2005.855867.
  • N. Gur’yanov, M. Yu. Salganskii, V. F. Khopin, M. M. Bubnov, and M. E. Likhachev, “GeO2-rich low-loss single-mode optical fibers,” Inorg. Mater., 44(3), pp. 278–284, 2008. https://doi.org/10.1134/S0020168508030126.
  • Jain, R. Sidharthan, P. M. Moselund, S. Yoo, D. Ho, O. Bang, “High power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber,” Proceedings Vol. 10083, Fiber Lasers XIV: Technology and Systems 1008318 2017. https://doi.org/10.1117/12.2251648.
  • Chen, H. Wei, T. Liu, X. Zhou, P. Yan, Z. Chen, S. Chen, J. Li, J. Hou, Q. Lu, “All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers,” IEEE Journal of Selected Topics in Quantum Electronics 20 (5) pp. 64-71 2014. DOI: 10.1109/JPHOT.2011.2175211.
  • Yang, J., Wang, Y., Fang, Y., Geng, W., Zhao, W., Bao, C., Ren, Y., Wang, Z., Liu, Y., Pan, Z.; et al., “Over-Two-Octave Supercontinuum Generation of Light-Carrying Orbital Angular Momentum in Germania Doped Ring-Core Fiber,” Sensors 22  6699 2022. https://doi.org/10.3390/s22176699.
  • Cascante-Vinda, S. Torres-Peiró, A. Diez, M.V. Andrés, “Supercontinuum generation in highly Ge-doped core Y-shaped microstructured optical fiber,” Appl Phys B 98 pp. 371–376 2010. DOI 10.1007/s00340-009-3723-5.19.
  • H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am., 55(10), pp. 1205−1208, 1965. https://doi.org/10.1364/JOSA.55.001205.
  • W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt., 23(24), pp. 4486−4493, 1984. https://doi.org/10.1364/AO.23.004486.
  • S. Lee, C. G. Lee, F. Bahloul, S. Kim, and K. Oh, “Simultaneously achieving a large negative dispersion and a high birefringence over Er and Tm dual gain bands in a square lattice photonic crystal fiber,” J. Lightwave Technol., 37(4), pp. 1254−1263, 2019. https://doi.org/10.1109/JLT.2019.2891756.
  • Liao, Z. Wang, T. Huang, Q. Wei, and D. Li, “Design of step-index-microstructured hybrid fiber for coherent supercontinuum generation,” Optik, 243, 167393, 2021. https://doi.org/10.1016/j.ijleo.2021.167393.
  • A. Hossain, Y. Namihira, M. A. Islam, and Y. Hirako, “Polarization maintaining highly nonlinear photonic crystal fiber for supercontinuum generation at 1.55 µm,” Opt. Laser Technol., 44(5), pp. 1261−1269, 2012. https://doi.org/10.1016/j.optlastec.2011.12.052.
  • K. Prajapati, V. K. Srivastav, V. Singh, and J. P. Saini, “Effect of germanium doping on the performance of silica based photonic crystal fiber,” Optik, 155, pp. 149−156, 2018. https://doi.org/10.1016/j.ijleo.2017.10.178.
  • A. Nair, I. S. Amiri, C. S. Boopathi, S. Karthikumar, M. Jayaraju, and P. Yupapina, “Numerical investigation of co-doped microstructured fiber with two zero dispersion wavelengths,” Results in Physics, 10, pp. 766−771, 2018. https://doi.org/10.1016/j.rinp.2018.07.032.
  • P. Agrawal, “Nonlinear Fiber Optics (5th edition),” Academic Press, Elsevier, 2013. https://doi.org/10.1016/C2011-0-00045-5.