Document Type : Reseach Article

Authors

Faculty of Engineering, Satya Negara Indonesia University, Jakarta, Indonesia

Abstract

An Internet of Things-based security system and OpenCV technology have been developed to improve the efficiency and ease of monitoring video footage from CCTV. The face detection process is carried out using the Haar Cascade method, while facial recognition is carried out using the Local Binary Pattern Histogram algorithm. The test results show that light intensity has a significant influence on system accuracy, but this system provides convenience in monitoring CCTV video in real-time through a webserver and improves security, especially in rooms by utilizing Internet of Things technology. The current facial recognition success rate is 72%. Therefore, for the subsequent development of the system, it is recommended to increase the success rate of facial recognition and also implement the File Transfer Protocol to ensure better and better system performance.

Keywords

  • [1] Sitinjak, Maman, and J. Suwita, “Analisa Dan Perancangan Sistem Informasi Administrasi Kursus Bahasa Inggris Pada Intensive English Course Di Ciledug Tangerang,” JURNAL IPSIKOM, Vol. 8, No. 1, 2020.
  • [2] H. Azizah, “Mendefinisikan Kembali Konsep Keamanan dalam Agenda Kebijakan Negara-Bangsa,” Jurnal Diplomasi Pertahanan, Vol. 6, No. 3, pp. 94–104, 2020.
  • [3] Arsal, B. Agus Wardijono, and D. Anggraini, “Face Recognition Untuk Akses Pegawai Bank Menggunakan Deep Learning Dengan Metode CNN,” Jurnal Nasional Teknologi dan Sistem Informasi, Vol. 6, No. 1, pp. 55–63, Jun. 2020, doi: 10.25077/teknosi.v6i1.2020.55-63.
  • [4] W. Alexander, S. R. Sentinuwo, and A. M. Sambul, “Implementasi Algoritma Pengenalan Wajah Untuk Mendeteksi Visual Hacking,” Jurnal Teknik Informatika, Vol. 11, No. 1, pp. 1–8, 2017.
  • [5] Purwati and G. Ariyanto, “Pengenalan Wajah Manusia berbasis Algoritma Local Binary Pattern,” Emitor: Jurnal Teknik Elektro, Vol. 17, No. 2, pp. 29–38, 2017, doi: 10.23917/emitor.v17i2.6232.
  • [6] Efendi, “Internet of Things (Iot) Sistem Pengendalian Lampu Menggunakan Raspberry Pi Berbasis Mobile,” Jurnal Ilmiah Ilmu Komputer, Vol. 4, No. 1, 2018, [Online]. Available: http://ejournal.fikom-unasman.ac.id.