Document Type : Reseach Article

10.57647/j.mjee.2025.1901.06

Abstract

Nine switch converters (NSCs) are power electronic devices that utilize nine power switches to convert electrical energy from one form to another. These converters are commonly used in various applications within the power industry. In fact, this type of converter is a multi-port power electronic device that consists of two three-phase terminals and a DC link, similar to the twelve-switch back-to-back (BTB) converter. However, it distinguishes itself by reducing the number of active switches by 25%. Nine switch converters offer several advantages over traditional converters. They can provide improved efficiency, reduced harmonic distortion and enhanced control capabilities. Additionally, they can handle higher power levels and operate at higher frequencies, making them suitable for a wide range of power industry applications. Furthermore, they are cost-effective, compact, and adaptable to higher power levels. By distributing voltage and current across fewer switches, the overall stress on individual components is reduced, which can enhance the lifespan and reliability of the converter. This paper summarizes the various utilizations of NSCs in modern power systems and briefly reviews the related challenges and future prospects.

Keywords

[1] Blaabjerg, F., Ma, K., & Yang, Y. (2014). Power electronics for renewable energy systems-status and trends. In CIPS 2014; 8th International Conference on Integrated Power Electronics Systems (pp. 1-11). VDE. https://ieeexplore.ieee.org/abstract/document/6776841
[2] Mousavi, M. H., CheshmehBeigi, H. M., & Ahmadi, M. (2023). A DDSRF-based VSG control scheme in islanded microgrid under unbalanced load conditions. Electrical Engineering, 105(6), 4321-4337. https://doi.org/10.1007/s00202-023-01941-0
[3] Dragičević, T., Vazquez, S., & Wheeler, P. (2020). Advanced control methods for power converters in DG systems and microgrids. IEEE Transactions on Industrial Electronics, 68(7), 5847-5862. https://doi.org/10.1109/TIE.2020.2994857
[4] Mousavi, M. H., & Moradi, H. (2025). Simultaneous compensation of distorted DC bus and AC side voltage using enhanced virtual synchronous generator in Islanded DC microgrid. International Journal of Electronics, 112(1), 151-176. https://doi.org/10.1080/00207217.2023.2278440
[5] Krishan, O., & Suhag, S. (2019). An updated review of energy storage systems: Classification and applications in distributed generation power systems incorporating renewable energy resources. International Journal of Energy Research, 43(12), 6171-6210. https://doi.org/10.1002/er.4285
[6] Ronanki, D., & Williamson, S. S. (2018). Modular multilevel converters for transportation electrification: Challenges and opportunities. IEEE Transactions on Transportation Electrification, 4(2), 399-407. https://doi.org/10.1109/TTE.2018.2792330
[7] Qin, Z., Loh, P. C., & Blaabjerg, F. (2014). Application criteria for nine-switch power conversion systems with improved thermal performance. IEEE Transactions on Power Electronics, 30(8), 4608-4620. https://doi.org/10.1109/TPEL.2014.2360629
[8] Choudhury, A., Pati, S., Sharma, R., & Kar, S. K. (2023). Real-Time Implementation of Electric Spring Using a Nine Switch Converter Topology for Combined Power Control in a Hybrid Microgrid System. Arabian Journal for Science and Engineering, 1-16. https://doi.org/10.1007/s13369-023-07846-1
[9] Dongre, A. A., Mishra, J. P., & Majji, R. K. (2022, July). Nine Switch Multifunctional Converter Configuration for Integrating Dynamic Voltage Restorer and Solar Photovoltaic. In 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP) (pp. 1-6). IEEE. https://doi.org/10.1109/ICICCSP53532.2022.9862373
[10] Ali, K., Das, P., & Panda, S. K. (2017). A special application criterion of the nine-switch converter with reduced conduction loss. IEEE Transactions on Industrial Electronics, 65(4), 2853-2862. https://doi.org/10.1109/TIE.2017.2748044
[11] Dehnavi, S. M. D., Mohamadian, M., Yazdian, A., & Ashrafzadeh, F. (2009). Space vectors modulation for nine-switch converters. IEEE Transactions on Power Electronics, 25(6), 1488-1496. https://doi.org/10.1109/TPEL.2009.2037001
[12] Guo, J. (2020). Research on simplified SVPWM strategy for nine-switch converter. Journal of Power Electronics, 20(6), 1386-1394. https://doi.org/10.1007/s43236-020-00124-5
[13] Can, E. (2019). Fault determination and analysis of complex switching structure at multilevel inverter. Tehnički vjesnik, 26(2), 398-404. https://doi.org/10.17559/TV-20180417194701
[14] Zhang, J., Li, L., & Dorrell, D. G. (2018). Control and applications of direct matrix converters: A review. Chinese Journal of Electrical Engineering, 4(2), 18-27. https://doi.org/10.23919/CJEE.2018.8409346
[15] Loh, P. C., Bahman, A. S., Qin, Z., & Blaabjerg, F. (2013, November). Evaluation of switch currents in nine-switch energy conversion systems. In IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society (pp. 755-760). IEEE. https://doi.org/10.1109/IECON.2013.6699229
[16] Vargas, R., Ammann, U., & Rodriguez, J. (2009). Predictive approach to increase efficiency and reduce switching losses on matrix converters. IEEE Transactions on Power Electronics, 24(4), 894-902. https://doi.org/10.1109/TPEL.2008.2011907
[17] Villar-Pique, G., Bergveld, H. J., & Alarcon, E. (2013). Survey and benchmark of fully integrated switching power converters: Switched-capacitor versus inductive approach. IEEE Transactions on power electronics, 28(9), 4156-4167. https://doi.org/10.1109/TPEL.2013.2242094
[18] Dos Santos, E. C., Jacobina, C. B., & Da Silva, O. I. (2011, November). Six-phase machine drive system with nine-switch converter. In IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society (pp. 4204-4209). IEEE. https://doi.org/10.1109/IECON.2011.6119776
[19] Wu, K. C. (2005). Switch-mode power converters: Design and analysis. Elsevier. https://doi.org/10.1016/B978-0-12-088795-8.X5000-4
[20] Pan, L., Zhang, J., Zhang, J., Pang, Y., Wang, B., Wang, K., & Xu, D. (2019). A novel space-vector modulation method for nine-switch converter. IEEE Transactions on Power Electronics, 35(2), 1789-1804. https://doi.org/10.1109/TPEL.2019.2923124
[21] Abdelhakim, A., Soeiro, T. B., Stecca, M., & Canales, F. (2022). Multiport hybrid converter for electrified transportation systems. IEEE Transactions on Industrial Electronics, 70(7), 6819-6829. https://doi.org/10.1109/TIE.2022.3199857
[22] Wang, P., Xu, H., & Yuan, L. (2024). Research on cascaded multilevel converters for dual motor drive systems based on a nine‐switch converter. IET Electric Power Applications. https://doi.org/10.1049/elp2.12441
[23] Can, E., & Kilic, U. (2024). A new high-frequency multilevel inverter effecting cables weight and energy efficiency of aircraft. Aircraft Engineering and Aerospace Technology, 96(3), 458-464. https://doi.org/10.1108/AEAT-06-2023-0158
[24] Pires, V. F., Sousa, D. M., & Martins, J. F. (2013, October). Three-phase nine switch inverter for a grid-connected photovoltaic system. In 2013 International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 1078-1083). IEEE. https://doi.org/10.1109/ICRERA.2013.6749913
[25] Can, E. (2024). Torques and the speed vibrations reducing and optimization of asynchronous motor with ECCA-PID controlling in power system. Sādhanā, 49(2), 126. https://doi.org/10.1007/s12046-024-02491-2
[26] Jibhakate, C. N., Chaudhari, M. A., & Renge, M. M. (2017, February). Nine-switch controlled induction motor drive with unity and leading power factor. In 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT) (pp. 1-6). IEEE. https://doi.org/10.1109/ICECCT.2017.8117994
[27] Liu, D., Zhang, X., Pan, L., & Li, A. (2020). Modelling and Control of Nine-Switch Converter-Based DFIG Wind Power System. Journal of Electrical Engineering & Technology, 15, 2587-2599. https://doi.org/10.1007/s42835-020-00506-6
[28] Abdelghani, D., & Boumediène, A. (2018). Direct torque control of two induction motors using the nine-switch inverter. International Journal of Power Electronics and Drive Systems (IJPEDS), 9(4), 1552-1564. http://doi.org/10.11591/ijpeds.v9.i4.pp1552-1564
[29] Munoz-Hernandez, G. A., Mino-Aguilar, G., Guerrero-Castellanos, J. F., & Peralta-Sanchez, E. (2020). Fractional order PI-based control applied to the traction system of an electric vehicle (EV). Applied Sciences, 10(1), 364. https://doi.org/10.3390/app10010364
[30] Rostami, R., Khoshnava, S. M., Lamit, H., Streimikiene, D., & Mardani, A. (2017). An overview of Afghanistan's trends toward renewable and sustainable energies. Renewable and Sustainable Energy Reviews, 76, 1440-1464. https://doi.org/10.1016/j.rser.2016.11.172
[31] Algarni, S., Tirth, V., Alqahtani, T., Alshehery, S., & Kshirsagar, P. (2023). Contribution of renewable energy sources to the environmental impacts and economic benefits for sustainable development. Sustainable Energy Technologies and Assessments, 56, 103098. https://doi.org/10.1016/j.seta.2023.103098
[32] Kumar, R., & Agarwal, A. (2022). Implementation of Nine-Switch converter to PV solar array operating with different loads. Materials Today: Proceedings, 51, 670-676. https://doi.org/10.1016/j.matpr.2021.06.160
[33] Chaudhari, M. A., Suryawanshi, H. M., & Renge, M. M. (2012). A three-phase unity power factor front-end rectifier for AC motor drive. IET Power Electronics, 5(1), 1-10. https://doi.org/10.1049/iet-pel.2011.0029
[34] Ahmadi, M., Sharafi, P., Mousavi, M. H., & Veysi, F. (2021). Power quality improvement in microgrids using statcom under unbalanced voltage conditions. International Journal of Engineering, 34(6), 1455-1467. https://doi.org/10.5829/ije.2021.34.06c.09
[35] Sun, A., & Niu, L. (2021). Input-Series-Output-Parallel LLC Resonant Converter with Input Power Factor Correction for AGV Chargers. In The Proceedings of the 9th Frontier Academic Forum of Electrical Engineering, Volume I, 309-317. https://doi.org/10.1007/978-981-33-6606-0_29
[36] Jibhakate, C. N., Chaudhari, M. A., & Renge, M. M. (2016, March). Power factor improvement using nine switch AC-DC-AC converter. In 2016 IEEE 6th International Conference on Power Systems (ICPS) (pp. 1-4). IEEE. https://doi.org/10.1109/ICPES.2016.7584169
[37] Blaabjerg, F., & Ma, K. (2013). Future on power electronics for wind turbine systems. IEEE Journal of emerging and selected topics in power electronics, 1(3), 139-152. https://doi.org/10.1109/JESTPE.2013.2275978
[38] Holdsworth, L., Ekanayake, J. B., & Jenkins, N. (2004). Power system frequency response from fixed speed and doubly fed induction generator‐based wind turbines. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 7(1), 21-35. https://doi.org/10.1002/we.105
[39] Moghadasi, A., & Islam, A. (2014, April). Enhancing LVRT capability of FSIG wind turbine using current source UPQC based on resistive SFCL. In 2014 IEEE PES T&D Conference and Exposition (pp. 1-5). IEEE. https://doi.org/10.1109/TDC.2014.6863374
[40] Meegahapola, L., Datta, M., Nutkani, I., & Conroy, J. (2018). Role of fault ride‐through strategies for power grids with 100% power electronic‐interfaced distributed renewable energy resources. Wiley Interdisciplinary Reviews: Energy and Environment, 7(4), e292. https://doi.org/10.1002/wene.292
[41] Jerin A, R. A., Kaliannan, P., & Subramaniam, U. (2018). Testing of low-voltage ride through capability compliance of wind turbines–a review. International Journal of Ambient Energy, 39(8), 891-897. https://doi.org/10.1080/01430750.2017.1340337
[42] Kirakosyan, A., El Moursi, M. S., Kanjiya, P., & Khadkikar, V. (2016). A nine-switch converter-based fault ride through topology for wind turbine applications. IEEE Transactions on Power Delivery, 31(4), 1757-1766. https://doi.org/10.1109/TPWRD.2016.2547942
[43] Almeida, A. D., Bradaschia, F., Rech, C., Caldeira, C. A., Neto, R. C., & Azevedo, G. M. (2024). Nine-Switch Multiport Converter Applied to Battery-Powered Tramway with Reduced Leakage Current. Energies, 17(6), 1434. https://doi.org/10.3390/en17061434
[44] Liu, C., Wu, B., Zargari, N., Xu, D., & Wang, J. (2009). Novel nine-switch PWM rectifier-inverter topology for three-phase UPS applications. EPE Journal, 19(2), 36-44. https://doi.org/10.1080/09398368.2009.11463715
[45] Jarutus, N., & Kumsuwan, Y. (2016). A carrier-based phase-shift space vector modulation strategy for a nine-switch inverter. IEEE Transactions on Power Electronics, 32(5), 3425-3441. https://doi.org/10.1109/TPEL.2016.2587811
[46] Nalli, P. K., Kadali, K. S., Bhukya, R., Rajeswari, V., & Garapati, D. P. (2021, November). Experimental Validation for A Nine-Switched 3-phase Multilevel Inverter (MLI) With a Photovoltaic (PV) Source of Array. In Journal of Physics: Conference Series (Vol. 2089, No. 1, p. 012021). IOP Publishing. https://doi.org/1088/1742-6596/2089/1/012021
[47] Gulbudak, O., & Gokdag, M. (2021). Finite control set model predictive control approach of nine switch inverter-based drive systems: Design, analysis, and validation. ISA transactions, 110, 283-304. https://doi.org/10.1016/j.isatra.2020.10.037
[48] Jiang, L., Chen, Y., Dai, F., Liu, K., Chen, X., & He, X. (2023). A nine-switch inverter with reduced leakage current for PV grid-tied systems using model-free predictive current control. Energy Reports, 9, 396-405. https://doi.org/10.1016/j.egyr.2023.05.170
[49] Gulbudak, O., & Gokdag, M. (2019). Asymmetrical multi-step direct model predictive control of nine-switch inverter for dual-output mode operation. IEEE Access, 7, 164720-164733. https://doi.org/10.1109/ACCESS.2019.2953141
[50] Gulbudak, O., & Gokdag, M. (2021). Dual-hysteresis band control of nine-switch inverter to control two induction motors. IEEE Transactions on Energy Conversion, 37(2), 788-799. https://doi.org/10.1109/TEC.2021.3131385
[51] Wang, K., Zhang, J., Pang, Y., Xu, D., & Pan, L. (2019). Modeling of nine-switch-converter based on virtual leg and its application in DFIG wind generation system. IEEE Transactions on Power Electronics, 35(7), 7674-7688. https://doi.org/10.1109/TPEL.2019.2958425
[52] Reusser, C. A., & Young, H. (2016, November). Nine-switch converter application on electric ship propulsion—A redundancy approach. In 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC) (pp. 1-7). IEEE. https://doi.org/10.1109/ESARS-ITEC.2016.7841389
[53] Diab, M. S., Elserougi, A. A., Abdel-Khalik, A. S., Massoud, A. M., & Ahmed, S. (2016). A nine-switch-converter-based integrated motor drive and battery charger system for EVs using symmetrical six-phase machines. IEEE Transactions on Industrial Electronics, 63(9), 5326-5335. https://doi.org/10.1109/TIE.2016.2555295