[1] Blaabjerg, F., Ma, K., & Yang, Y. (2014). Power electronics for renewable energy systems-status and trends. In CIPS 2014; 8th International Conference on Integrated Power Electronics Systems (pp. 1-11). VDE. https://ieeexplore.ieee.org/abstract/document/6776841
[2] Mousavi, M. H., CheshmehBeigi, H. M., & Ahmadi, M. (2023). A DDSRF-based VSG control scheme in islanded microgrid under unbalanced load conditions. Electrical Engineering, 105(6), 4321-4337. https://doi.org/10.1007/s00202-023-01941-0
[3] Dragičević, T., Vazquez, S., & Wheeler, P. (2020). Advanced control methods for power converters in DG systems and microgrids. IEEE Transactions on Industrial Electronics, 68(7), 5847-5862. https://doi.org/10.1109/TIE.2020.2994857
[4] Mousavi, M. H., & Moradi, H. (2025). Simultaneous compensation of distorted DC bus and AC side voltage using enhanced virtual synchronous generator in Islanded DC microgrid. International Journal of Electronics, 112(1), 151-176. https://doi.org/10.1080/00207217.2023.2278440
[5] Krishan, O., & Suhag, S. (2019). An updated review of energy storage systems: Classification and applications in distributed generation power systems incorporating renewable energy resources. International Journal of Energy Research, 43(12), 6171-6210. https://doi.org/10.1002/er.4285
[6] Ronanki, D., & Williamson, S. S. (2018). Modular multilevel converters for transportation electrification: Challenges and opportunities. IEEE Transactions on Transportation Electrification, 4(2), 399-407. https://doi.org/10.1109/TTE.2018.2792330
[7] Qin, Z., Loh, P. C., & Blaabjerg, F. (2014). Application criteria for nine-switch power conversion systems with improved thermal performance. IEEE Transactions on Power Electronics, 30(8), 4608-4620. https://doi.org/10.1109/TPEL.2014.2360629
[8] Choudhury, A., Pati, S., Sharma, R., & Kar, S. K. (2023). Real-Time Implementation of Electric Spring Using a Nine Switch Converter Topology for Combined Power Control in a Hybrid Microgrid System. Arabian Journal for Science and Engineering, 1-16. https://doi.org/10.1007/s13369-023-07846-1
[9] Dongre, A. A., Mishra, J. P., & Majji, R. K. (2022, July). Nine Switch Multifunctional Converter Configuration for Integrating Dynamic Voltage Restorer and Solar Photovoltaic. In 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP) (pp. 1-6). IEEE. https://doi.org/10.1109/ICICCSP53532.2022.9862373
[10] Ali, K., Das, P., & Panda, S. K. (2017). A special application criterion of the nine-switch converter with reduced conduction loss. IEEE Transactions on Industrial Electronics, 65(4), 2853-2862. https://doi.org/10.1109/TIE.2017.2748044
[11] Dehnavi, S. M. D., Mohamadian, M., Yazdian, A., & Ashrafzadeh, F. (2009). Space vectors modulation for nine-switch converters. IEEE Transactions on Power Electronics, 25(6), 1488-1496. https://doi.org/10.1109/TPEL.2009.2037001
[12] Guo, J. (2020). Research on simplified SVPWM strategy for nine-switch converter. Journal of Power Electronics, 20(6), 1386-1394. https://doi.org/10.1007/s43236-020-00124-5
[13] Can, E. (2019). Fault determination and analysis of complex switching structure at multilevel inverter. Tehnički vjesnik, 26(2), 398-404. https://doi.org/10.17559/TV-20180417194701
[14] Zhang, J., Li, L., & Dorrell, D. G. (2018). Control and applications of direct matrix converters: A review. Chinese Journal of Electrical Engineering, 4(2), 18-27. https://doi.org/10.23919/CJEE.2018.8409346
[15] Loh, P. C., Bahman, A. S., Qin, Z., & Blaabjerg, F. (2013, November). Evaluation of switch currents in nine-switch energy conversion systems. In IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society (pp. 755-760). IEEE. https://doi.org/10.1109/IECON.2013.6699229
[16] Vargas, R., Ammann, U., & Rodriguez, J. (2009). Predictive approach to increase efficiency and reduce switching losses on matrix converters. IEEE Transactions on Power Electronics, 24(4), 894-902. https://doi.org/10.1109/TPEL.2008.2011907
[17] Villar-Pique, G., Bergveld, H. J., & Alarcon, E. (2013). Survey and benchmark of fully integrated switching power converters: Switched-capacitor versus inductive approach. IEEE Transactions on power electronics, 28(9), 4156-4167. https://doi.org/10.1109/TPEL.2013.2242094
[18] Dos Santos, E. C., Jacobina, C. B., & Da Silva, O. I. (2011, November). Six-phase machine drive system with nine-switch converter. In IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society (pp. 4204-4209). IEEE. https://doi.org/10.1109/IECON.2011.6119776
[19] Wu, K. C. (2005). Switch-mode power converters: Design and analysis. Elsevier. https://doi.org/10.1016/B978-0-12-088795-8.X5000-4
[20] Pan, L., Zhang, J., Zhang, J., Pang, Y., Wang, B., Wang, K., & Xu, D. (2019). A novel space-vector modulation method for nine-switch converter. IEEE Transactions on Power Electronics, 35(2), 1789-1804. https://doi.org/10.1109/TPEL.2019.2923124
[21] Abdelhakim, A., Soeiro, T. B., Stecca, M., & Canales, F. (2022). Multiport hybrid converter for electrified transportation systems. IEEE Transactions on Industrial Electronics, 70(7), 6819-6829. https://doi.org/10.1109/TIE.2022.3199857
[22] Wang, P., Xu, H., & Yuan, L. (2024). Research on cascaded multilevel converters for dual motor drive systems based on a nine‐switch converter. IET Electric Power Applications. https://doi.org/10.1049/elp2.12441
[23] Can, E., & Kilic, U. (2024). A new high-frequency multilevel inverter effecting cables weight and energy efficiency of aircraft. Aircraft Engineering and Aerospace Technology, 96(3), 458-464. https://doi.org/10.1108/AEAT-06-2023-0158
[24] Pires, V. F., Sousa, D. M., & Martins, J. F. (2013, October). Three-phase nine switch inverter for a grid-connected photovoltaic system. In 2013 International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 1078-1083). IEEE. https://doi.org/10.1109/ICRERA.2013.6749913
[25] Can, E. (2024). Torques and the speed vibrations reducing and optimization of asynchronous motor with ECCA-PID controlling in power system. Sādhanā, 49(2), 126. https://doi.org/10.1007/s12046-024-02491-2
[26] Jibhakate, C. N., Chaudhari, M. A., & Renge, M. M. (2017, February). Nine-switch controlled induction motor drive with unity and leading power factor. In 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT) (pp. 1-6). IEEE. https://doi.org/10.1109/ICECCT.2017.8117994
[27] Liu, D., Zhang, X., Pan, L., & Li, A. (2020). Modelling and Control of Nine-Switch Converter-Based DFIG Wind Power System. Journal of Electrical Engineering & Technology, 15, 2587-2599. https://doi.org/10.1007/s42835-020-00506-6
[28] Abdelghani, D., & Boumediène, A. (2018). Direct torque control of two induction motors using the nine-switch inverter. International Journal of Power Electronics and Drive Systems (IJPEDS), 9(4), 1552-1564. http://doi.org/10.11591/ijpeds.v9.i4.pp1552-1564
[29] Munoz-Hernandez, G. A., Mino-Aguilar, G., Guerrero-Castellanos, J. F., & Peralta-Sanchez, E. (2020). Fractional order PI-based control applied to the traction system of an electric vehicle (EV). Applied Sciences, 10(1), 364. https://doi.org/10.3390/app10010364
[30] Rostami, R., Khoshnava, S. M., Lamit, H., Streimikiene, D., & Mardani, A. (2017). An overview of Afghanistan's trends toward renewable and sustainable energies. Renewable and Sustainable Energy Reviews, 76, 1440-1464. https://doi.org/10.1016/j.rser.2016.11.172
[31] Algarni, S., Tirth, V., Alqahtani, T., Alshehery, S., & Kshirsagar, P. (2023). Contribution of renewable energy sources to the environmental impacts and economic benefits for sustainable development. Sustainable Energy Technologies and Assessments, 56, 103098. https://doi.org/10.1016/j.seta.2023.103098
[32] Kumar, R., & Agarwal, A. (2022). Implementation of Nine-Switch converter to PV solar array operating with different loads. Materials Today: Proceedings, 51, 670-676. https://doi.org/10.1016/j.matpr.2021.06.160
[33] Chaudhari, M. A., Suryawanshi, H. M., & Renge, M. M. (2012). A three-phase unity power factor front-end rectifier for AC motor drive. IET Power Electronics, 5(1), 1-10. https://doi.org/10.1049/iet-pel.2011.0029
[34] Ahmadi, M., Sharafi, P., Mousavi, M. H., & Veysi, F. (2021). Power quality improvement in microgrids using statcom under unbalanced voltage conditions. International Journal of Engineering, 34(6), 1455-1467. https://doi.org/10.5829/ije.2021.34.06c.09
[35] Sun, A., & Niu, L. (2021). Input-Series-Output-Parallel LLC Resonant Converter with Input Power Factor Correction for AGV Chargers. In The Proceedings of the 9th Frontier Academic Forum of Electrical Engineering, Volume I, 309-317. https://doi.org/10.1007/978-981-33-6606-0_29
[36] Jibhakate, C. N., Chaudhari, M. A., & Renge, M. M. (2016, March). Power factor improvement using nine switch AC-DC-AC converter. In 2016 IEEE 6th International Conference on Power Systems (ICPS) (pp. 1-4). IEEE. https://doi.org/10.1109/ICPES.2016.7584169
[37] Blaabjerg, F., & Ma, K. (2013). Future on power electronics for wind turbine systems. IEEE Journal of emerging and selected topics in power electronics, 1(3), 139-152. https://doi.org/10.1109/JESTPE.2013.2275978
[38] Holdsworth, L., Ekanayake, J. B., & Jenkins, N. (2004). Power system frequency response from fixed speed and doubly fed induction generator‐based wind turbines. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 7(1), 21-35. https://doi.org/10.1002/we.105
[39] Moghadasi, A., & Islam, A. (2014, April). Enhancing LVRT capability of FSIG wind turbine using current source UPQC based on resistive SFCL. In 2014 IEEE PES T&D Conference and Exposition (pp. 1-5). IEEE. https://doi.org/10.1109/TDC.2014.6863374
[40] Meegahapola, L., Datta, M., Nutkani, I., & Conroy, J. (2018). Role of fault ride‐through strategies for power grids with 100% power electronic‐interfaced distributed renewable energy resources. Wiley Interdisciplinary Reviews: Energy and Environment, 7(4), e292. https://doi.org/10.1002/wene.292
[41] Jerin A, R. A., Kaliannan, P., & Subramaniam, U. (2018). Testing of low-voltage ride through capability compliance of wind turbines–a review. International Journal of Ambient Energy, 39(8), 891-897. https://doi.org/10.1080/01430750.2017.1340337
[42] Kirakosyan, A., El Moursi, M. S., Kanjiya, P., & Khadkikar, V. (2016). A nine-switch converter-based fault ride through topology for wind turbine applications. IEEE Transactions on Power Delivery, 31(4), 1757-1766. https://doi.org/10.1109/TPWRD.2016.2547942
[43] Almeida, A. D., Bradaschia, F., Rech, C., Caldeira, C. A., Neto, R. C., & Azevedo, G. M. (2024). Nine-Switch Multiport Converter Applied to Battery-Powered Tramway with Reduced Leakage Current. Energies, 17(6), 1434. https://doi.org/10.3390/en17061434
[44] Liu, C., Wu, B., Zargari, N., Xu, D., & Wang, J. (2009). Novel nine-switch PWM rectifier-inverter topology for three-phase UPS applications. EPE Journal, 19(2), 36-44. https://doi.org/10.1080/09398368.2009.11463715
[45] Jarutus, N., & Kumsuwan, Y. (2016). A carrier-based phase-shift space vector modulation strategy for a nine-switch inverter. IEEE Transactions on Power Electronics, 32(5), 3425-3441. https://doi.org/10.1109/TPEL.2016.2587811
[46] Nalli, P. K., Kadali, K. S., Bhukya, R., Rajeswari, V., & Garapati, D. P. (2021, November). Experimental Validation for A Nine-Switched 3-phase Multilevel Inverter (MLI) With a Photovoltaic (PV) Source of Array. In Journal of Physics: Conference Series (Vol. 2089, No. 1, p. 012021). IOP Publishing. https://doi.org/1088/1742-6596/2089/1/012021
[47] Gulbudak, O., & Gokdag, M. (2021). Finite control set model predictive control approach of nine switch inverter-based drive systems: Design, analysis, and validation. ISA transactions, 110, 283-304. https://doi.org/10.1016/j.isatra.2020.10.037
[48] Jiang, L., Chen, Y., Dai, F., Liu, K., Chen, X., & He, X. (2023). A nine-switch inverter with reduced leakage current for PV grid-tied systems using model-free predictive current control. Energy Reports, 9, 396-405. https://doi.org/10.1016/j.egyr.2023.05.170
[49] Gulbudak, O., & Gokdag, M. (2019). Asymmetrical multi-step direct model predictive control of nine-switch inverter for dual-output mode operation. IEEE Access, 7, 164720-164733. https://doi.org/10.1109/ACCESS.2019.2953141
[50] Gulbudak, O., & Gokdag, M. (2021). Dual-hysteresis band control of nine-switch inverter to control two induction motors. IEEE Transactions on Energy Conversion, 37(2), 788-799. https://doi.org/10.1109/TEC.2021.3131385
[51] Wang, K., Zhang, J., Pang, Y., Xu, D., & Pan, L. (2019). Modeling of nine-switch-converter based on virtual leg and its application in DFIG wind generation system. IEEE Transactions on Power Electronics, 35(7), 7674-7688. https://doi.org/10.1109/TPEL.2019.2958425
[52] Reusser, C. A., & Young, H. (2016, November). Nine-switch converter application on electric ship propulsion—A redundancy approach. In 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC) (pp. 1-7). IEEE. https://doi.org/10.1109/ESARS-ITEC.2016.7841389
[53] Diab, M. S., Elserougi, A. A., Abdel-Khalik, A. S., Massoud, A. M., & Ahmed, S. (2016). A nine-switch-converter-based integrated motor drive and battery charger system for EVs using symmetrical six-phase machines. IEEE Transactions on Industrial Electronics, 63(9), 5326-5335. https://doi.org/10.1109/TIE.2016.2555295