Document Type : Reseach Article

Authors

1 STES’s Smt Kashibai Navale College of Engineering, Savitribai Phule Pune University, Pune, India.

2 Department of Information Technology, MKSSS’s Cummins College of Engineering for Women, Savitribai Phule Pune University, Pune, India.

10.57647/j.mjee.2025.1902.32

Abstract

A proficient real-time decision support system has the potential to reduce the daily probability of acute exacerbation and loss of control for those suffering from chronic obstructive pulmonary disease (COPD). Applying statistical learning techniques to well-structured, medical E-nose data typically results in high accuracy. Volatile organic compounds or changes by disease processes can be measured in exhaled breath. This work elaborated on the integration of sensors into a sensor array, sampling methodologies, and an algorithm for data analysis. The clinical feasibility of the device was assessed in 40 COPD patients, 20 controls, 8 smokers, and 10 ambient air samples. The classification model utilizing Bi-Directional Long Short-Term Memory (Bi-LSTM) achieved an accuracy, sensitivity, specificity, and area under the curve of
99%, with recall, precision, and F1-score of 1 for COPD classification. The gas sensor array was non-invasive, economical, and provided a quick response. Research has shown that the VOC profiles of COPD patients differ from those of healthy controls, indicating that the E-nose system may serve as a viable diagnostic tool for COPD patients.

Keywords

[1]
Sumanth Swaminathan, Klajdi Qirko, Ted Smith, Ethan Corcoran, Nicholas G Wysham, Gaurav Bazaz, George Kappel, Anthony N Gerber,” A machine learning approach to triaging patients with chronic obstructive pulmonary disease,” PLoS One 2017 Nov 22;12(11):e0188532.
https://doi.org/10.1371/journal.pone.0188532
.
[2]
David M Mannino, A Sonia Buist,” Global burden of COPD: Risk factors, prevalence, and future trends,” Lancet.2007 Sep 1;370(9589):765-73.  DOI: 10.1016/S0140-6736(07)61380-4.
[3]
Claus F Vogelmeier et al. “Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management, and prevention of COPD 2017 report. GOLD Executive Summary,” https://doi.org/10.1164/rccm.201701-0218PP.
[4]
B R Celli, W MacNee,” American Thoracic Society/European Respiratory Society Task Force, Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper,” Eur Respir J. 2004 Jun;23(6):932-46. https://doi.org/10.1183/09031936.04.00014304.
[5]
José Luis López-Campos, Wan Tan, Joan B Soriano,”Global Burden of COPD”, Respirology.2016 Jan; 21(1):14-23. Epub 2015 Oct 23. DOI: 10.1111/resp.12660.
[6]
Maribel Rodríguez-Aguilar, Lorena Díaz de Leon-Martínez, Patricia Gorocica-Rosete, Rogelio Perez Padilla, Ireri Thirion-Romero, Omar Ornelas-Rebolledo, Rogelio Flores Ramirez,” Identification of breath prints for the COPD detection associated with smoking and household air pollution by E-nose,” Respiratory Medicine, Volume 163, March 2020, 105901. https://doi.org/10.1016/j.rmed.2020.105901.
[7]
Binson V A, M Subramoniam, Luke Mathew,” Non-invasive detection of COPD and Lung Cancer through breath analysis using MOS sensor array-based e-nose,” Expert Rev Mol Diagn,2021 Nov;21(11):1223-1233.  https://doi/full/10.1080/14737159.2021.1971079.
[8]
Joon Young Choi, Chin Kook Rhee,” Diagnosis and treatment of early Chronic Obstructive Lung Disease (COPD),” J Clin Med. 2020 Oct 26;9(11):3426. https://doi.org/10.3390/jcm9113426.
[9]
Maria Basanta, Baharudin Ibrahim, Rachel Dockry, David Douce, Mike Morris, Dave Singh, Ashley Woodcock & Stephen J Fowler,” Exhaled volatile organic compounds for phenotyping chronic obstructive pulmonary disease: a cross-sectional study,” Respiratory Research volume 13, Article number: 72 (2012).  https://doi.org/10.1186/1465-9921-13-72 .
[10]
A Bikov, Zs Lazar, K Schandl, B M Antus, G Losonczy, Ildiko Horvath,” Exercise changes volatiles in exhaled breath assessed by an electronic nose,” Acta Physiol Hung  2011 Sep;98(3):321-8, https://doi.org/10.1556/aphysiol.98.2011.3.9.
[11]
Andras Bikov, Judit Pako, Dorottya Kovacs, Lilla Tamasi, Zsofia Lazar, Janos Rigo, Gyorgy Losonczy, Ildiko Horvath,” Exhaled breath volatile alterations in pregnancy assessed with electronic nose,” Biomarkers
[12]
Binson V A, Sania Thomas, Prinu Chacko Philip, Anish Thomas, Pratap Pillai,  Nithin John P,
Detection of early lung cancer cases in patients with COPD using e-nose technology: A promising non-invasive approach,” 2023 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE). https://doi.org/10.1109/RASSE60029.2023.10363510
[13]
Binson V A, Philip Mathew, Sania Thomas, Luke Mathew,” Detection of lung cancer and stages via breath analysis using a self-made electronic nose device,” Expert Rev Mol Diagn, 2024 Apr;24(4):341-353. https://doi.org/10.1080/14737159.2024.2316755.
[14]
Binson, V.A., Subramoniam, M. & Mathew, L.,” Prediction of lung cancer with a sensor array based e-nose system using machine learning methods,” Microsyst Technol 30, 1421–1434 (2024). https://doi.org/10.1007/s00542-024-05656-5.
[15]
V A Binson, Sania Thomas, G K Ragesh, Ajay Kumar,” Non-invasive diagnosis of COPD with E-nose using XGBoost algorithm,” 2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS). https://doi.org/10.1109/ACCESS51619.2021.9563303.
[16]
V A Binson, M Subramoniam, “Design and development of an e-nose system for the diagnosis of pulmonary diseases,” Acta Bioeng Biomech. 2021;23(1):35-44. https://doi.org/10.37190/ABB-01737-2020-03.
[17]
Carlos A. Cuastumal, Cristhian M. Duran,” Wireless electronic smell system for the deletion of diseases through the exhaled breath,” September 2018, Chemical Engineering Transactions 68:391-396. https://doi.org/10.3303/CET1868066.
[18]
Maribel Rodríguez-Aguilar, Lorena Díaz de León-Martínez, Patricia Gorocica-Rosete, Rogelio Pérez Padilla, Ireri Thirión-Romero, Omar Ornelas-Rebolledo, Rogelio Flores-Ramírez,” Identification of breath prints for the COPD detection associated with smoking and household air pollution by electronic nose,” Respir Med 2020 Mar;163:105901. Epub 2020 Feb 12. https://doi.org/10.1016/j.rmed.2020.105901.
[19]
Job JMH van Bragt, Paul Brinkman, Rianne de Vries, Susanne J.H. Vijverberg, Els J.M. Weersink, Eric G. Haarman, Frans H.C. de Jongh, Sigrid Kester, Annelies Lucas, Johannes C.C.M. in ’t Veen, Peter J. Sterk, Elisabeth H.D. Bel, Anke H. Maitland-van der Zee,” Identification of recent exacerbations in COPD patients by electronic nose,” ERJ Open Res 2020; 6: 00307-2020. Doi 10.1183/23120541.00307-2020.
[20]
P van Velzen, P Brinkman, H H Knobel, J W K van den Berg, R E Jonkers, R J Loijmans, J M Prins, P J Sterk,” Exhaled breath profiles before, during and after exacerbation of COPD: A prospective follow-up study”, COPD 2019 Dec;16(5-6):330-337. Epub 2019 Oct 7.  DOI: 10.1080/15412555.2019.1669550.
[21]
Martin Thomas Gaugg, Yvonne Nussbaumer-Ochsner, Lukas Bregy, Anna Engler, Nina Stebler, Thomas Gaisl, Tobias Bruderer, Nora Nowak, Pablo Sinues, Renato Zenobi, Malcolm Kohler,” Real-time breath analysis reveals specific metabolic signatures of COPD exacerbation”, Chest 2019 Aug;156(2):269-276. Epub 2019 Jan 24. DOI: 10.1016/j.chest.2018.12.023.
[22]
Chris O Phillips, Yasir Syed, Neil Mac Parthaláin, Reyer Zwiggelaar, Tim C Claypole, Keir E Lewis,” Machine learning methods on exhaled volatile organic compounds for distinguishing COPD patients from healthy controls,” J Breath Res.2012 Sep;6(3):036003. Epub 2012 Jul 4. https://doi.org/10.1088/1752-7155/6/3/036003.
[23]
A-C Hauschild, J I Baumbach, J Baumbach,” Integrated statistical learning of metabolic ion mobility spectrometry profiles for pulmonary disease identification,” Genet Mol Res.2012 Aug 16;11(3):2733-44. DOI: 10.4238/2012.July.10.17.
[24]
Scarlata S, Finamore P, Meszaros M, Dragonieri S, Bikov A,” The Role of Electronic Noses in Phenotyping Patients with Chronic Obstructive Pulmonary Disease,”  Biosensors (Basel). 2020 Nov 11;10(11):171.
https://doi.org/10.3390/bios10110171. PMID: 33187142; PMCID: PMC7697924.
[25]
Ildiko Horváth et al.,” A European Respiratory Society technical standard: exhaled biomarkers in lung disease,” Eur Respir J. 2017 Apr 26;49(4):1600965. https://doi.org/10.1183/13993003.00965-2016.
[26]
Binson V A, M Subramoniam, Luke Mathew,” Detection of COPD and lung cancer with electronic nose using ensemble learning methods,” Clin Chim Acta. 2021 Dec: 523:231-238. https://doi.org/10.1016/j.cca.2021.10.005.
[27]
Rosdiana, Rachmad Almi Putra,” Design of E-nose for the detection of Tuberculosis (TB) and chronic obstructive pulmonary disease (COPD) using the method of artificial neural network (ANN),” Proceedings of the 2nd International Conference on Science, Technology, and Modern Society (ICSTMS 2020). https://doi.org/10.2991/assehr.k.210909.092.
[28]
Anant Mohan, Bijay Ranjan Patnaik, Rohit Vadala, Naveen Bhatraju, Divyanjali Rai,  Saurabh Mittal et al.,
Discriminating chronic respiratory diseases from lung cancer using exhaled breath signatures by E-nose: A pilot study,” LUNG CANCER, Volume 164, Issue 4, Supplement A4146-A4147October 2023. https://doi.org/10.1016/j.chest.2023.07.2700.
[29]
V. A. Binson, M. Subramoniam, Y. Sunny and L. Mathew, "Prediction of Pulmonary Diseases With Electronic Nose Using SVM and XGBoost," in IEEE Sensors Journal, vol. 21, no. 18, pp. 20886-20895, 15 Sept.15, 2021, https://doi.org/10.1109/JSEN.2021.3100390.
[30]
V A Binson, M Subramoniam, Luke Mathew,” Discrimination of COPD and lung cancer from controls through breath analysis using a self-developed e-nose,” J Breath Res. 2021 Aug 3;15(4).
[31]
Maria Basanta, Roger M Jarvis, Yun Xu, Gavin Blackburn, Ruth Tal-Singer, Ashley Woodcock, Dave Singh, Royston Goodacre, C L Paul Thomas, Stephen J Fowler,” Non-invasive metabolomics analysis of breath using differential mobility spectrometry in patients with chronic obstructive pulmonary disease and healthy smokers,” Analyst.2010 Feb;135(2):315-20..Epub 2010 Jan 5.https://doi.org/10.1039/B916374C.
[32]
Niki Fens, Aeilko H. Zwinderman, Marc P. van der Schee, Selma B. de Nijs, Erica Dijkers, Albert C. Roldaan, David Cheung, Elisabeth H. Bel, and Peter J. Sterk,” Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma”, American Journal Of Respiratory And Critical Care Medicine Vol 180 2009. https://doi.org/10.1164/rccm.200906-0939OC.   
[33]
A Gaida, O Holz, C Nell, S Schuchardt, B Lavae-Mokhtari, L Kruse1, U Boas, J Langejuergen, M Allers, S Zimmermann,” A dual center study to compare breath volatile organic compounds from smokers and non-smokers with and without COPD”, Journal of Breath Research, Volume 10, Number 2. DOI: 10.1088/1752-7155/10/2/026006.
[34]
Christopher Phillips, Neil Mac Parthaláin, Yasir Syed, Davide Deganello, Timothy Claypole, Keir Lewis,” Short-term infra-subject variation in exhaled volatile organic compounds (VOCs) in COPD patients and healthy controls and its effect on disease classification,” Metabolites. 2014 Jun; 4(2): 300–318. Published online 2014 May 9.  Doi: 10.3390/metabo4020300.
[35]
Pablo Martinez-Lozano Sinues, Lukas Meier, Christian Berchtold, Mark Ivanov, Noriane Sievi, Giovanni Camen, Malcolm Kohler, Renato Zenobi,” Breath Analysis in real-time by mass spectrometry in chronic obstructive pulmonary disease,” Respiration.2014;87(4):301-10. Epub 2014 Feb 19. DOI: 10.1159/000357785.
[36]
Rianne de Vries, Niloufar Farzan, Timon Fabius, Frans H C De Jongh, Patrick M C Jak, Eric G Haarman, Erik Snoey, Johannes C C M In ’t Veen, Yennece W F Dagelet, Anke-Hilse Maitland-Van Der Zee, Annelies Lucas, Michel M Van Den Heuvel, Marguerite Wolf-Lansdorf, Mirte Muller, Paul Baas, Peter J Sterk,” Prospective detection of early lung cancer in patients with COPD in regular care by electronic nose analysis of exhaled breath,” Chest. 2023 May 19; S0012-3692(23)00754-7DOI: 10.1016/j.chest.2023.04.050.
[37]
Lukas Bregy, Yvonne Nussbaumer-Ochsner, Pablo Martinez-Lozano Sinues, Diego Garcia-Gómez, Yannick Suter, Thomas Gaisl, Nina Stebler, Martin Thomas Gaugg, Malcolm Kohler, Renato Zenobi,” Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath”, Clinical Mass Spectrometry, Volume 7, January 2018, Pages 29-35. https://doi.org/10.1016/j.clinms.2018.02.003.
[38]
José Javier Jareño-Esteban, M Ángeles Muñoz-Lucas, Óscar Gómez-Martín, Sergio Utrilla-Trigo, Carlos Gutiérrez-Ortega, Antonio Aguilar-Ros, Luis Collado-Yurrita, Luis Miguel Callol-Sánchez,” Study of 5 volatile organic compounds in exhaled breath in chronic obstructive pulmonary disease”, Arch Bronconeumol 2017 May;53(5):251-256. Epub 2016 Oct 22. DOI: 10.1016/j.arbres.2016.09.003.
[39]
Vasiliki Besa, Helmut Teschler, Isabella Kurth, Amir Maqbul Khan, Paul Zarogoulidis, Joerg Ingo Baumbach, Urte Sommerwerck, Lutz Freitag, Kaid Darwiche,” Exhaled volatile organic compounds discriminate patients with chronic obstructive pulmonary disease from healthy subjects,” Int J Chron Obstruct Pulmon Dis. 2015; 10: 399–406. DOI: 10.2147/COPD.S76212.
[40]
Alex Pizzini, Wojciech Filipiak, Johannes Wille, Clemens Ager, Helmut Wiesenhofer, Róbert Kubinec, Jaroslav Blaško, Christoph Tschurtschenthaler, Chris A Mayhew, Günter Weiss, Rosa Bellmann-Weiler,” Analysis of volatile organic compounds in the breath of patients with stable or acute exacerbation of chronic obstructive pulmonary disease,” J Breath Res. 2018 Mar 6;12(3):036002.  DOI: 10.1088/1752-7163/aaa4c5.
[41]
Akira D M Hattesohl, Rudolf A Jörres, Holger Dressel, Severin Schmid, Claus Vogelmeier, Timm Greulich, Sarah Noeske, Robert Bals, Andreas Rembert Koczulla,” Discrimination between COPD patients with and without alpha 1-antitrypsin deficiency using an electronic nose”, Respirology.2011 Nov;16(8):1258-64. DOI: 10.1111/j.1440-1843.2011.02047.x.
 
[42]
JJBN Van Berkel, J.W. Dallinga, G.M. Möller, R.W.L. Godschalk, E.J. Moonen, E.F.M. Wouters, F.J. Van Schooten,” A profile of volatile organic compounds in breath discriminates COPD patients from controls,” Respiratory Medicine, Volume 104, Issue 4, April 2010, Pages 557-563.   DOI: 10.1016/j.rmed.2009.10.018.
[43]
N Fens, A C Roldaan, M P van der Schee, R J Boksem, A H Zwinderman, E H Bel, P J Sterk,” External validation of exhaled breath profiling using an electronic nose in the discrimination of asthma with fixed airways obstruction and chronic obstructive pulmonary disease,” Clin Exp Allergy. 2011 Oct;41(10):1371-8. DOI: 10.1111/j.1365-2222.2011.03800.x.
[44]
Maribel Rodríguez-Aguilar, Sofía Ramirez Garcia, Cesar Ilizaliturri-Hernández, Alejandro Gómez-Gómez, Evelyn Van-Brussel, Fernando Díaz-Barriga, Susanna Medellín-Garibay, Rogelio Flores-Ramírez,” Ultrafast GC coupled to E-nose to identify volatile biomarkers in exhaled breath from COPD: A pilot study”, Biomed Chromatogr. 2019 Dec; 33(12):e4684. https://doi.org/10.1002/bmc.4684
[45]
Fernanda Monedeiro, Rodolfo Borges Dos Reis, Fernanda Maris Peria, Cláudia Tarcila Gomes Sares, Bruno Spinosa De Martinis,” Investigation of sweat VOC profiles in assessment of cancer biomarkers using HS-GC-MS,” J Breath Res. 2020 Feb 25;14(2):026009.  https://doi.org /10.1088/1752-7163/ab5b3c.
[46]
Michaela Malásková, Ben Henderson, Prema D Chellayah, Veronika Ruzsanyi, Paweł Mochalski, Simona M Cristescu, Chris A Mayhew,” Proton transfer reaction time-of-flight mass spectrometric measurements of volatile compounds contained in peppermint oil capsules of relevance to real-time pharmacokinetic breath studies,” Journal of Breath Research, Volume 13, Number 4,2019. https://doi.org/10.1088/1752-7163/ab26e2.
[47]
Patrik Španěl, David Smith,” Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS,” Clinical Mass Spectrometry, Volume 16, April 2020, Pages 18-24. https://doi.org/10.1016/j.clinms.2020.02.001.
[48]
Ileana Andreea Ratiu, Tomasz Ligor, Victor Bocos-Bintintan, Chris A Mayhew, Bogusław Buszewski,” Review Volatile Organic Compounds in Exhaled Breath as Fingerprints of Lung Cancer, Asthma and COPD,” J Clin Med. 2020 Dec 24;10(1):32. https://doi.org/10.3390/jcm10010032
[49]
C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detection,” in Proc. Adv. Neural Inf. Process. Syst., vol. 26, 2013, pp. 1–9. https://proceedings.neurips.cc/paper_files/paper/2013/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf.
[50]
J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders, “Selective search for object recognition,” Int. J. Comput. Vis., vol. 104, no. 2, pp. 154–171, Sep. 2013. http://www.huppelen.nl/publications/selectiveSearchDraft.pdf.
[51]
G. Hinton and L. van der Maaten, “Visualizing data using t-SNE,” J. Mach. Learn. Res., vol. 9, no. 86, pp. 2579–2605, 2008. https://jmlr.org/papers/v9/vandermaaten08a.html.
[52]
R. Bhuvaneswari and S. G. Vaidyanathan, “Classification and grading of diabetic retinopathy images using mixture of ensemble classifiers,” J. Intell. Fuzzy Syst., vol. 41, no. 6, pp. 7407–7419, Dec. 2021. https://doi.org/10.3233/JIFS-211364.
[53]
T. Vignesh, K. K. Thyagharajan, R. B. Jeyavathana, and K. V. Kanimozhi, “Land use and land cover classification using recurrent neural networks with shared layered architecture,” in Proc. Int. Conf. Comput. Commun. Information. (ICCCI), Jan. 2021, pp. 1–6. https://doi.org/10.1109/ICCCI50826.2021.9402638.
[54]
Dewanand A Meshram, Dipti D Patil,” Predicting Sour or Sweet: Exploring Advance DL Methods for Odor Perception Based on Molecular Properties,” International Journal of Intelligent Systems and Applications in Engineering, 2023/9/6. https://ijisae.org/index.php/IJISAE/article/view/3433.
[55]
Gulbakshee Dharmale, Dipti Patil, Swati Shekapure, Aditi Chougule, “AI-Based Medicine Intake Tracker,” Nature-Inspired Methods for Smart Healthcare Systems and Medical Data, 2023/12/2. https://doi.org/10.1007/978-3-031-45952-8_2.
[56]
Cristhian Manuel Durán Acevedo, Carlos A. Cuastumal Vasquez,Jeniffer Katerine Carrillo Gómez,
 “Electronic nose dataset for COPD detection from smokers and healthy people through exhaled breath analysis,” Data in Brief, Volume 35, April 2021, 106767, https://doi.org/10.1016/j.dib.2021.106767.
[57]
Andras Bikov, Marton Hernadi, Beata Zita Korosi, Laszlo Kunos, Gabriella Zsamboki, Zoltan Sutto, Adam Domonkos Tarnoki, David Laszlo Tarnoki, Gyorgy Losonczy, Ildiko Horvath,” Expiratory flow rate, breath hold and anatomic dead space influence electronic nose ability to detect lung cancer,” BMC Pulm Med. 2014 Dec 16:14:202. http://doi.org/10.1186/1471-2466-14-202.
[58]
Dorottya Kovacs, Andras Bikov, Gyorgy Losonczy, Gabriella Murakozy, Ildiko Horvath, “Follow-up of lung transplant recipients using an electronic nose,” J Breath Res.2013 Mar;7(1):017117.