Document Type : Reseach Article
Authors
1 LISIC Laboratory, Faculty of Electrical Engineering, USTHB, Bab-Ezzouar, Algiers, Algeria.
2 Laboratory of Telecommunications and Smart Systems, University of Ziane Achour, Djelfa, Algeria.
3 Department of Electronic Engineering, University of M’sila, M’sila, Algeria.
Abstract
Constant false alarm rate (CFAR) processors are critical for radar reliable target detection in radar systems. Traditional CFAR designs often assume Gaussian clutter, which may not reflect real-world conditions. L´evy distributions, with heavy tails and a location parameter (δ), provide a more accurate model for non-Gaussian and non-centered clutter in complex environments. This paper presents a comprehensive performance analysis of three widely used CFAR processors-cell-averaging (CA), greatest-of (GO), and smallest-of (SO) in homogeneous L´evy-distributed clutter with an arbitrary δ. We derive integral-form expressions for the probability of false alarm (PFA) for each processor, explicitly incorporating δ. Furthermore, we provide analytical formulations for the probability density function (PDF) of key statistics involving L´evy random variables, such as sums, minima, and maxima. Monte Carlo simulations validate the theoretical results,
showing that the PFA performance improves with increasing δ, highlighting the critical impact of clutter location on CFAR detector performance. These findings offer valuable insights for designing robust CFAR detectors in non-Gaussian, non-centered clutter environments.
Keywords
- P. Gandhi and S. A. Kassam, “Analysis of CFAR processors in nonhomogeneous background,”IEEE Trans. Aerosp. Electron. Syst., vol. 24, no. 4, pp. 427–445, 1988. DOI: https://doi.org/10.1109/7.7185.
- Dai, P. Wang, H. Wei, and Y. Xu, “Adaptive detection with constant false alarm ratio in a non-Gaussian noise background,” IEEE Commun. Lett., vol. 23, no. 8, pp. 1369–1372, 2019. DOI: https://doi.org/10.1109/lcomm.2019.2918816.
- Zhou and J. Xie, “Performance analysis of linearly combined order statistics CFAR processors in heterogeneous background,” IEEE Trans. Aerosp. Electron. Syst., pp. 1–10, 2023. DOI: https://doi.org/10.1109/taes.2023.3339405.
- Chen, A. Chen, W. Liu, and X. Ma, “CFAR detection in nonhomogeneous Weibull sea clutter for skywave OTHR,”IEEE Geosci. Remote Sens. Lett., vol. 20, pp. 1–5, 2023. DOI: https://doi.org/10.1109/lgrs.2023.3313179.
- P. Gandhi and S. A. Kassam, “Optimality of the cell averaging CFAR detector,”IEEE Trans. Inf. Theory, vol. 40, pp. 1226–1228, 1994. DOI: https://doi.org/10.1109/18.335950.
- G. Hansen and J. H. Sawyers, “Detectability Loss due to Greatest-of Selection in a Cell Averaging CFAR,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-16, pp. 115-118, 1980.DOI: https://doi.org/10.1109/taes.1980.308885.
- Weiss, “Analysis of Some Modified Cell-Averaging CFAR Processors in Multiple-Target Situations," IEEE Trans. Aerosp. Electron. Syst., vol. AES-18, no. 1, pp. 102-114, Jan. 1982. DOI: https://doi.org/10.1109/taes.1982.309210.
- V. Trunk, “Range resolution of targets using automatic detectors,” EEE Trans. Aerosp. Electron. Syst., vol. AES-14, no. 5, pp. 750-755, Sept. 1978. DOI: https://doi.org/10.1109/taes.1978.308625.
- T. Rickard and G.M. Dillard, “Adaptive detection algorithm for multiple target situations,” EEE Trans. Aerosp. Electron. Syst., vol. AES-13, no. 4, pp. 338-343, July 1977. DOI: https://doi.org/10.1109/taes.1977.308466.
- Sim, J. Heo, Y. Jung, S. Lee, and Y. Jung, “FPGA Implementation of Efficient CFAR Algorithm for Radar Systems,” Sensors, vol. 23, no. 2, p. 954, 2023. DOI: https://doi.org/10.3390/s23020954.
- H. Kerbaa, A. Mezache and H. Oudira, “Improved Decentralized SO-CFAR and GO-CFAR Detectors via Moth Flame Algorithm,” 2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE), M'sila, Algeria, 2022, pp. 1-5. DOI: https://doi.org/10.1109/icateee57445.2022.10093725.
- P. Jiménez Jiménez, F. D. A. García, M. C. L. Alvarado, G. Fraidenraich and E. R. d. Lima, “A General CA-CFAR Performance Analysis for Weibull-Distributed Clutter Environments,” IEEE Geosci. Remote Sens. Lett., , vol. 19, pp. 1-5, 2022. DOI: https://doi.org/10.1109/lgrs.2022.3187554.
- C. Luna Alvarado, F. D. A. García, L. P. J. Jiménez, G. Fraidenraich, and Y. Iano, “Performance evaluation of SOCA CFAR detectors in Weibull-distributed clutter environments,”IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022.
- Rohling, “Radar CFAR thresholding in clutter and multiple target situations,”IEEE Trans. Aerosp. Electron. Syst., vol. AES-19, pp. 608–621, 1983. DOI: https://doi.org/10.1109/taes.1983.309350.
- Guida, M. J. Longo, and M. Lops, “Biparametric CFAR procedures for lognormal clutter,”IEEE Trans. Aerosp. Electron. Syst., vol. 29, pp. 798–809, 1993. DOI: https://doi.org/10.1109/7.220931.
- Rifkin, “Analysis of CFAR performance in Weibull clutter,”IEEE Trans. Aerosp. Electron. Syst., vol. 30, pp. 315–329, 1994. DOI: https://doi.org/10.1109/7.272257.
- Watts, “Cell-averaging CFAR gain in spatially correlated k-distributed clutter,”IEE Proc.-Radar Sonar Navig., vol. 143, no. 5, pp. 321–327, 1996. DOI: https://doi.org/10.1049/ip-rsn:19960745.
- V. Weinberg, “Constant false alarm rate detectors for Pareto clutter models,” IET Radar Sonar Navig., vol. 7, no. 2, pp. 153–163, 2013. DOI: https://doi.org/10.1049/iet-rsn.2011.0374.
- A. Aalo, K. P. Peppas, and G. Efthymoglou, “Performance of CA-CFAR detectors in nonhomogeneous positive alpha stable clutter,”IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 3, pp. 2027–2038, 2015. DOI: https://doi.org/10.1109/taes.2015.140043
- Y. Rihan, Z. B. Nossair, and R. I. Mubarak, “An improved CFAR algorithm for multiple environmental conditions,”Signal Image Video Process. (SIViP), vol. 18, pp. 3383–3393, 2024. DOI: https://doi.org/10.1007/s11760-024-03001-x.
- Tsakalides, F. Trinic and C. L. Nikias, “Performance assessment of CFAR processors in Pearson-distributed clutter,” IEEE Trans. Aerosp. Electron. Syst., vol. 36, no. 4, pp. 1377-1386, Oct. 2000. DOI: https://doi.org/10.1109/7.892685.
- Meziani and F. Soltani, “Performance Analysis of Some CFAR Detectors in Homogeneous and Non-Homogeneous Pearson-Distributed Clutter,” Signal Process., vol. 86, no. 8, pp. 2115-2122, Aug. 2006. DOI: https://doi.org/10.1016/j.sigpro.2006.02.036.
- Zhang, X. Wang, and S. Zhang, “Persymmetric Adaptive Target Detection With Dual-Polarization in Compound Gaussian Sea Clutter With Inverse Gamma Texture,” IEEE J. Ocean. Eng., vol. 47, no. 1, pp. 1-14, Jan. 2022. DOI: https://doi.org/10.1109/tgrs.2022.3207809.
- Li, Y. Wang, and X. Zhang, “Adaptive Persymmetric Subspace Detection in Non-Gaussian Sea Clutter With Structured Interference,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1-5, 2022. DOI: https://doi.org/10.1109/tgrs.2024.3374270.
- Salehi, M. Imani, A. Zaimbashi, and H. Yanikomeroglu, “Learning and model-based approaches for radar target detection,”IEEE Trans. Cogn. Commun. Netw., vol. 10, no. 5, pp. 1817–1830, Oct. 2024. DOI: https://doi.org/10.1109/tccn.2024.3391327.
- Zebiri and A. Mezache, “CFAR detection using two scale invariant functions in heterogeneous Weibull clutter,”Signal Image Video Process. (SIViP), vol. 18, pp. 7285–7291, 2024. DOI: https://doi.org/10.1007/s11760-024-03393-w.
- C. Luna Alvarado, F. D. A. García, L. P. J. Jiménez, G. Fraidenraich, and Y. Iano, “Performance evaluation of SOCA-CFAR detectors in Weibull-distributed clutter environments,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022. DOI: https://doi.org/10.1109/lgrs.2022.3152936.
- Abbadi, H. Bouhedjeur, A. Bellabas, T. Menni, and F. Soltani, “Generalized closed-form expressions for CFAR detection in heterogeneous environment,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 7, pp. 1011–1015, July 2018. DOI: https://doi.org/10.1109/lgrs.2018.2822782.
- Garvanov, “Probability characteristics of CFAR processors in presence of randomly arriving impulse interference,” in Proc. Int. Conf. Telecommun. Remote Sens., Cham, Switzerland, Sep. 2023, pp. 17–32. DOI: https://doi.org/10.1007/s11760-024-03480-y.
- Baadeche, M. A. Bouteldja, and F. Soltani, “Target detection performance analysis for MIMO radars in gamma environment,”Signal Image Video Process. (SIViP), vol. 18, pp. 8379–8385, 2024. DOI: https://doi.org/10.1007/s11760-024-03480-y.
- Zhou, J. Xie, G. Li, and Y. Du, “Robust CFAR detector with weighted amplitude iteration in nonhomogeneous sea clutter,”IEEE Trans. Aerosp. Electron. Syst., vol. 53, pp. 1520–1535, 2017. DOI: https://doi.org/10.1109/taes.2017.2671798.
- Zhou, J. Xie, B. Zhang, and G. Li, “Maximum likelihood detector in Gamma-distributed sea clutter,”IEEE Geosci. Remote Sens. Lett., vol. 15, pp. 1705–1709, 2018. DOI: https://doi.org/10.1109/lgrs.2018.2859785.
- Sahed, E. Kenane, A. Khalfa, and F. Djahli, “Exact closed-form PFA expressions for CA- and GO-CFAR detectors in gamma-distributed radar clutter,”IEEE Trans. Aerosp. Electron. Syst., vol. 59, pp. 4674–4679, 2023. DOI: https://doi.org/10.1109/taes.2022.3232101.
- S. Gradshteyn, I. M. Ryzhik, D. Zwillinger, and V. Moll, Table of Integrals, Series, and Products, 8th ed. Amsterdam: Academic Press, Sep. 2014. DOI: https://doi.org/10.1016/C2010-0-64839-5
- Xue, J. Liu, S. Xu, and M. Pan, “Adaptive detection of radar targets in heavy-tailed sea clutter with lognormal texture,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–11, 2022. DOI: https://doi.org/10.1109/tgrs.2021.3137389.