Document Type : Reseach Article
Authors
- Mohamad Harris Misran 1
- Maizatul Alice Meor Said 1
- Mohd Azlishah Othman 1
- Siti Normi Zabri 1
- Eliyana Ruslan 1
- Noor Azwan Shairi 1
- Zahriladha Zakaria 1
- Suleiman Aliyu Babale 2
- Mohd Zahid Idris 3
1 Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Teknologi dan Kejuruteraan Elektronik dan Komputer (FTKEK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100, Durian Tunggal, Melaka, Malaysia.
2 Department of Electronics and Telecommunications Engineering, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
3 Marine Engineering and ETO, Abu Dhabi Maritime Academy, 6th Streeet, Musaffah M-14, Abu Dhabi, United Arab Emirates.
Abstract
Microwave sensors have grown in popularity in recent years because of their contactless sensing capability, real-time detection capability, measurement, accuracy, ease of manufacture and robustness. They have become one of the primary choices in smart sensing applications. However, some of their key limitations, such as accuracy, sensitivity, and selectivity, might be regarded as limiting their utilization and application range. Thus, this project proposed to design and develop a high-accuracy microwave sensor for material characterization. This microwave sensor uses a Defected Ground Structure (DGS) to enhance sensor accuracy in determining the dielectric characteristics of the material under test (MUT). The sensor achieved high accuracy with a percentage error of 0.56% to 1.86% for the tested various MUTs, demonstrating reliable precision. The DGS significantly enhances performance, optimizing efficiency and compactness while reducing transmission losses on cost-effective substrates like FR4. Its high Q-factor of 595 enables detecting small dielectric constant variation.
Keywords