Document Type : Review Article

Authors

1 Faculty of Engineering & Technology, University of Mazandaran

2 Department of Electrical and Computer, Babol University of Technology, Babol, Iran

3 Shahid Beheshti University, Tehran, Iran

4 School of Computing, University of Kent, Canterbury, UK

Abstract

Due to artifacts, brain magnetic resonance image (MRI) segmentation is a complicated concern. This research work presents an image segmentation approach for brain magnetic resonance (MR) images. The proposed method is based on multi dimensional fuzzy C-mean. In this technique, different features of neighbouring pixels such as mean, standard deviation and singular value are extracted and then a multi dimensional feature vector is created in feature selection stage in which the best combination of extracted features is used. The created feature vector is used as an input to the multi dimensional FCM. The results have been evaluated with manual segmentation on two publicly available datasets متعدد الأبعاد غامض C یعنی وتضع فی اعتبارها المعلومات المکانیة لالدماغ بالرنین المغناطیسی التقسیم إلى شرائحبسبب القطع الأثریة والدماغ المغناطیسیة صورة الرنین (MRI) تجزئة هو مصدر قلق تعقیدا. یعرض هذا العمل البحثی نهج تجزئة صورة لدماغ بالرنین المغناطیسی (MR) الصور. وتستند هذه الطریقة المقترحة على التعددیة الأبعاد غامض C-المتوسط. فی هذه التقنیة، یتم استخراج میزات مختلفة من وحدات البکسل المجاورة مثل المتوسط والانحراف المعیاری وقیمة فریدة ثم یتم إنشاء ناقلات میزة الأبعاد المتعددة فی مرحلة اختیار میزة التی یتم استخدام أفضل مزیج من المیزات المستخرج. یتم استخدام ناقلات میزة خلق کمدخل إلى FCM متعددة الأبعاد. وقد تم تقییم النتائج مع تجزئة یدویة على اثنین من مجموعات البیانات المتاحة للجمهور多维模糊C均值考虑脑MRI分割空间信息贾马尔抽象由于文物,大脑磁共振成像(MRI)分割是一个复杂的问题。这项研究工作提出了大脑磁共振(MR)图像的图像分割方法。该方法是基于多维模糊C-均值。在该技术中,相邻像素如平均值,标准偏差和奇异值的不同特征提取,然后一个多维特征向量在特征选择阶段创建在其中使用的提取的特征的最佳组合。所创建的特征矢量被用作输入到多维FCM。结果已经与手动分段评估在两个公开获得的数据集

Keywords

[1] C. R. G. Guttmann, F. A. Jolesz, R. Kikinis, R. J. Killiany, M. B. Moss, T. Sandor, and M. S. Albert, "White matter changes with normal aging," Neurology vol. 50, pp. 972-78 April 1 1998.
[2] L. O’Donnell, "Semi-Automatic Medical Image Segmentation," Master of Science, Department of Electrical Engineering and Computer Science, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, MASSACHUSETTS, 2001.
[3] C. Brechbühler, G. Gerig, and G. Szekely, "Compensation of spatial inhomogeneity in MRI based on a multi-valued image model and a parametric bias estimate," in Visualization in Biomedical Computing, 1996, pp. 141-46.
[4] M. Styner, C. Brechbuhler, G. Szekely, and G. Gerig, "Parametric estimate of intensity inhomogeneities applied to MRI," IEEE transactions on medical imaging, vol. 19, pp. 153-65, Mar 2000.
[5] S. Prima, N. Ayache, T. Barrick, and N. Roberts, "Maximum Likelihood Estimation of the Bias Field in MR Brain Images: Investigating Different Modelings of the Imaging Process," presented at the Proceedings of the 4th International Conference on Medical Image Computing and Computer-Assisted Intervention, Utrecht, The Netherlands, 2001.
[6] A. Montillo, J. K. Udupa, L. Axel, and D. Metaxas, "Integrated approach for the removal of intensity inhomogeneity and thermal noise in SPAMM-MRI using scale-based fuzzy connectedness and multiple nonlinear adaptive filters," in SPIE Medical Imaging, 2003, pp. 1025–1036.
[7] A. Simmons, P. S. Tofts, G. J. Barker, and S. R. Arridge, "Sources of intensity nonuniformity in spin echo images at 1.5 T," Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine, vol. 32, pp. 121-8, Jul 1994.
[8] J. G. Sled, A. P. Zijdenbos, and A. C. Evans, "A nonparametric method for automatic correction of intensity nonuniformity in MRI data," IEEE transactions on medical imaging, vol. 17, pp. 87-97, Feb 1998.
[9] J. D. Gispert, S. Reig, J. Pascau, J. J. Vaquero, P. Garcia-Barreno, and M. Desco, "Method for bias field correction of brain T1-weighted magnetic resonance images minimizing segmentation error," Human brain mapping, vol. 22, pp. 133-44, Jun 2004.
[10] M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, "A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data," IEEE transactions on medical imaging, vol. 21, pp. 193-9, Mar 2002.
[11] D. L. Pham, C. Xu, and J. L. Prince, "A survey of current methods in medical image segmentation," Annual Review of Biomedical Engineering, vol. 2, pp. 315-337, 2000.
[12] A. Liew and H. Yan, "Current Methods in the Automatic Tissue Segmentation of 3D Magnetic Resonance Brain Images," Current Medical Imaging Reviews, vol. 2, pp. 91-103, 2006.
[13] W. J. Niessen, K. L. Vincken, J. Weickert, B. M. T. H. Romeny, and M. A. Viergever, "Multiscale Segmentation of Three-Dimensional MR Brain Images," International Journal of Computer Vision, vol. 31, pp. 185-202, 1999.
[14] J. Wang, J. Kong, Y. Lu, M. Qi, and B. Zhang, "A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints," Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society, vol. 32, pp. 685-98, Dec 2008.
[15] S. B. Mehta, S. Chaudhury, A. Bhattacharyya, and A. Jena, "A soft-segmentation visualization scheme for magnetic resonance images," Magnetic Resonance Imaging, vol. 23, pp. 817-828, 2005.
[16] Z.-X. Ji, Q.-S. Sun, and D.-S. Xia, "A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image," Computerized Medical Imaging and Graphics, vol. 35, pp. 383-397, 2011.
[17] Z. Zhou and Z. Ruan, "Multicontext wavelet-based thresholding segmentation of brain tissues in magnetic resonance images," Magnetic Resonance Imaging, vol. 25, pp. 381-385, 2007.
[18] Z. Y. Shan, J. Z. Liu, and G. H. Yue, "Automated human frontal lobe identification in MR images based on fuzzy-logic encoded expert anatomic knowledge," Magnetic Resonance Imaging, vol. 22, pp. 607-617, 2004.
[19] Y. Zhuge, J. K. Udupa, and P. K. Saha, "Vectorial scale-based fuzzy-connected image segmentation," Computer Vision and Image Understanding, vol. 101, pp. 177-193, 2006.
[20] K. C. Ciesielski, J. K. Udupa, P. K. Saha, and Y. Zhuge, "Iterative relative fuzzy connectedness for multiple objects with multiple seeds," Computer Vision and Image Understanding, vol. 107, pp. 160-182, 2007.
[21] M. Bomans, K. H. Hohne, U. Tiede, and M. Riemer, "3-D segmentation of MR images of the head for 3-D display," IEEE transactions on medical imaging, vol. 9, pp. 177-83, 1990.
[22] T. McInerney and D. Terzopoulos, "Deformable models in medical image analysis: a survey," Medical image analysis, vol. 1, pp. 91-108, Jun 1996.
[23] L. Ji and H. Yan, "An attractable snakes based on the greedy algorithm for contour extraction," Pattern Recognition, vol. 35, pp. 791-806, 2002.
[24] W. Abd-Almageed, A. El-Osery, and C. Smith, "A fuzzy-statistical contour model for MRI segmentation and target tracking," presented at the SPIE, Orlando, FL, USA 2004.
[25] T. Heinonen, P. Dastidar, H. Eskola, H. Frey, P. Ryymin, and E. Laasonen, "Applicability of semi-automatic segmentation for volumetric analysis of brain lesions," Journal of medical engineering & technology, vol. 22, pp. 173-8, Jul-Aug 1998.
[26] R. O. Duda, P. E. Hart, and D. G. Stork, "Pattern Classification," ed: John Wiley & Sons Inc, 2001.
[27] U. Vovk, F. Pernus, and B. Likar, "A review of methods for correction of intensity inhomogeneity in MRI," IEEE transactions on medical imaging, vol. 26, pp. 405-21, Mar 2007.
[28] C. Zhu and T. Jiang, "Multicontext fuzzy clustering for separation of brain tissues in magnetic resonance images," NeuroImage, vol. 18, pp. 685-96, Mar 2003.
[29] G. R. Hillman, C.-W. Chang, H. Ying, J. Yen, L. Ketonen, and T. A. Kent, "A Fuzzy Logic Approach to Identifying Brain Structures in MRI Using Expert Anatomic Knowledge," Computers and Biomedical Research, vol. 32, pp. 503-516, 1999.
[30] F. Admiraal-Behloul, D. M. van den Heuvel, H. Olofsen, M. J. van Osch, J. van der Grond, M. A. van Buchem, and J. H. Reiber, "Fully automatic segmentation of white matter hyperintensities in MR images of the elderly," NeuroImage, vol. 28, pp. 607-17, Nov 15 2005.
[31] S. B. Mehta, S. Chaudhury, A. Bhattacharyya, and A. Jena, "Handcrafted fuzzy rules for tissue classification," Magnetic Resonance Imaging, vol. 26, pp. 815-823, 2008.
[32] G. Wiselin and G. Wiselin Jiji, "Unsupervised Segmentation using Fuzzy Logic based Texture Spectrum for MRI Brain Images," presented at the Third World Enformatika Conference, WEC'05, Istanbul, Turkey, 2005.
[33] K. S. Chuang, H. L. Tzeng, S. Chen, J. Wu, and T. J. Chen, "Fuzzy c-means clustering with spatial information for image segmentation," Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society, vol. 30, pp. 9-15, Jan 2006.
[34] A. W. Liew and H. Yan, "An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation," IEEE transactions on medical imaging, vol. 22, pp. 1063-75, Sep 2003.
[35] S. Ramathilagam, R. Pandiyarajan, A. Sathya, R. Devi, and S. R. Kannan, "Modified fuzzy c-means algorithm for segmentation of T1-T2-weighted brain MRI," Journal of Computational and Applied Mathematics, vol. 235, pp. 1578-1586, 2011.
[36] D. L. Pham and J. L. Prince, "An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities," Pattern Recognition Letters, vol. 20, pp. 57-68, 1999.
[37] D. L. Pham and J. L. Prince, "adaptive fuzzy segmentation of magnetic resonance images," IEEE transactions on medical imaging, vol. 18, pp. 737-52, Sep 1999.
[38] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms. New York ; London: Plenum, 1981.
[39] J. Ghasemi and M. R. K. mollaei, "A New Approach for Speech Enhancement Based On Eigenvalue Spectral Subtraction," Signal Processing : An International Journal vol. 3, pp. 34-41, 2009.
[40] A. Afzalian, M. R. K. Mollaei, M. Dousti, and J. Ghasemi, "A New Approach for Speech Enhancement Based On Singular Value Decomposition and Wavelet Transform," Australian Journal of Basic and Applied Sciences, vol. 4, pp. 3602-12, August, 2010.
[41] A. Demirhan and I. Güler, "Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation," Engineering Applications of Artificial Intelligence, vol. 24, pp. 358-367, 2011.
[42] Available: http://www.bic.mni.mcgill.ca/brainweb
[43] Available: http://www.cma.mgh.harvard.edu/ibsr.
[44] B. Caldairou, N. Passat, P. A. Habas, C. Studholme, and F. Rousseau, "A non-local fuzzy segmentation method: Application to brain MRI," Pattern Recognition, vol. 44, pp. 1916-1927, 2011.